Advertisement for orthosearch.org.uk
Results 61 - 80 of 2590
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 67-B, Issue 3 | Pages 432 - 437
1 May 1985
Silver R de la Garza J Rang M

The lower limbs of five cadavers were dissected and the lengths of the muscle fibres and the weights of all the muscles below the knee were measured. From this information the relative strength and excursion of each muscle was determined. We found that the plantarflexors of the ankle were six times as strong as the dorsiflexors. We have therefore discarded the concept of "muscle balance" in tendon transfer surgery and propose that task appropriateness should be the guide. The constant relationship between muscle fibre length and muscle excursion means that contractures are accompanied by decreased excursion. Tendon lengthening improves deformity but does not improve the decreased active range of movement


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 2 | Pages 364 - 364
1 May 1971
Freeman MAR


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 2 | Pages 234 - 238
1 May 1978
Cyron B Hutton W


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 114 - 121
1 Jan 2014
Pekmezci M McDonald E Buckley J Kandemir U

We investigated a new intramedullary locking nail that allows the distal interlocking screws to be locked to the nail. We compared fixation using this new implant with fixation using either a conventional nail or a locking plate in a laboratory simulation of an osteoporotic fracture of the distal femur. A total of 15 human cadaver femora were used to simulate an AO 33-A3 fracture pattern. Paired specimens compared fixation using either a locking or non-locking retrograde nail, and using either a locking retrograde nail or a locking plate. The constructs underwent cyclical loading to simulate single-leg stance up to 125 000 cycles. Axial and torsional stiffness and displacement, cycles to failure and modes of failure were recorded for each specimen. When compared with locking plate constructs, locking nail constructs had significantly longer mean fatigue life (75 800 cycles (sd 33 900) vs 12 800 cycles (sd 6100); p = 0.007) and mean axial stiffness (220 N/mm (sd 80) vs 70 N/mm (sd 18); p = 0.005), but lower mean torsional stiffness (2.5 Nm/° (sd 0.9) vs 5.1 Nm/° (sd 1.5); p = 0.008). In addition, in the nail group the mode of failure was either cut-out of the distal screws or breakage of nails, and in the locking plate group breakage of the plate was always the mode of failure. Locking nail constructs had significantly longer mean fatigue life than non-locking nail constructs (78 900 cycles (sd 25 600) vs 52 400 cycles (sd 22 500); p = 0.04).

The new locking retrograde femoral nail showed better stiffness and fatigue life than locking plates, and superior fatigue life to non-locking nails, which may be advantageous in elderly patients.

Cite this article: Bone Joint J 2014;96-B:114–21.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 6 | Pages 997 - 997
1 Nov 1996
SPALDING TJW


Bone & Joint Open
Vol. 3, Issue 5 | Pages 415 - 422
17 May 2022
Hillier-Smith R Paton B

Aims. Avulsion of the proximal hamstring tendon origin can result in significant functional impairment, with surgical re-attachment of the tendons becoming an increasingly recognized treatment. The aim of this study was to assess the outcomes of surgical management of proximal hamstring tendon avulsions, and to compare the results between acute and chronic repairs, as well as between partial and complete injuries. Methods. PubMed, CINAHL, SPORTdiscuss, Cochrane Library, EMBASE, and Web of Science were searched. Studies were screened and quality assessed. Results. In all, 35 studies (1,530 surgically-repaired hamstrings) were included. Mean age at time of repair was 44.7 years (12 to 78). A total of 846 tears were acute, and 684 were chronic, with 520 tears being defined as partial, and 916 as complete. Overall, 92.6% of patients were satisfied with the outcome of their surgery. Mean Lower Extremity Functional Score was 74.7, and was significantly higher in the partial injury group. Mean postoperative hamstring strength was 87.0% of the uninjured limb, and was higher in the partial group. The return to sport (RTS) rate was 84.5%, averaging at a return of 6.5 months. RTS was quicker in the acute group. Re-rupture rate was 1.2% overall, and was lower in the acute group. Sciatic nerve dysfunction rate was 3.5% overall, and lower in the acute group (p < 0.05 in all cases). Conclusion. Surgical treatment results in high satisfaction rates, with good functional outcomes, restoration of muscle strength, and RTS. Partial injuries could expect a higher functional outcome and muscle strength return. Acute repairs result in a quicker RTS with a reduced rate of re-rupture and sciatic nerve dysfunction. Cite this article: Bone Jt Open 2022;3(5):415–422


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 938 - 945
1 Aug 2022
Park YH Kim W Choi JW Kim HJ

Aims. Although absorbable sutures for the repair of acute Achilles tendon rupture (ATR) have been attracting attention, the rationale for their use remains insufficient. This study prospectively compared the outcomes of absorbable and nonabsorbable sutures for the repair of acute ATR. Methods. A total of 40 patients were randomly assigned to either braided absorbable polyglactin suture or braided nonabsorbable polyethylene terephthalate suture groups. ATR was then repaired using the Krackow suture method. At three and six months after surgery, the isokinetic muscle strength of ankle plantar flexion was measured using a computer-based Cybex dynamometer. At six and 12 months after surgery, patient-reported outcomes were measured using the Achilles tendon Total Rupture Score (ATRS), visual analogue scale for pain (VAS pain), and EuroQoL five-dimension health questionnaire (EQ-5D). Results. Overall, 37 patients completed 12 months of follow-up. No difference was observed between the two groups in terms of isokinetic plantar flexion strength, ATRS, VAS pain, or EQ-5D. No re-rupture was observed in either group. Conclusion. The use of absorbable sutures for the repair of acute ATR was not inferior to that of nonabsorbable sutures. This finding suggests that absorbable sutures can be considered for the repair of acute ATRs. Cite this article: Bone Joint J 2022;104-B(8):938–945


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims. Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. Methods. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS). Results. The HSS was significantly lower in the study group (1.76 (SD 0.46)) than in the control group (2.31 (SD 0.74); p = 0.002). A multivariate model showed the odds of having a hip fracture were 17 times greater in patients who had an HSS ≤ 2.2. The CTFEA has a sensitivity of 89%, a specificity of 76%, and an area under the curve of 0.90. Conclusion. This preliminary study demonstrates the feasibility of using a CTFEA-based bone strength parameter to assess hip fracture risk in a population of T2DM patients. Cite this article: Bone Joint J 2021;103-B(9):1497–1504


Aims. There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation. Methods. Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured. Results. Micromotions in FEMs without a blocking screw significantly increased as nail/medullary canal mismatch increased, but were similar between FEMs with a blocking screw regardless of mismatch. Stress concentration at the nail construct was observed at the junction of the nail body and lag screw in all FEMs, and increased as nail/medullary canal mismatch increased, regardless of blocking screws. Mean stresses over regions of interest in FEMs with a blocking screw were much lower than regions of interest in those without. Mean stresses in FEMs with a blocking screw were lower than the yield strength, yet mean stresses in FEMs without blocking screws having 8 mm and 10 mm mismatch exceeded the yield strength. All mean stresses at distal locking screws were less than the yield strength. Conclusion. Using an additional anteroposterior blocking screw may be a simple and effective method to enhance fixation stability in unstable pertrochanteric fractures with a large nail/medullary canal mismatch due to osteoporosis. Cite this article: Bone Joint Res 2022;11(3):152–161


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 946 - 952
1 Aug 2022
Wu F Zhang Y Liu B

Aims. This study aims to report the outcomes in the treatment of unstable proximal third scaphoid nonunions with arthroscopic curettage, non-vascularized bone grafting, and percutaneous fixation. Methods. This was a retrospective analysis of 20 patients. All cases were delayed presentations (n = 15) or failed nonoperatively managed scaphoid fractures (n = 5). Surgery was performed at a mean duration of 27 months (7 to 120) following injury with arthroscopic debridement and arthroscopic iliac crest autograft. Fracture fixation was performed percutaneously with Kirschner (K)-wires in 12 wrists, a headless screw in six, and a combination of a headless screw and single K-wire in two. Clinical outcomes were assessed using grip strength, patient-reported outcome measures, and wrist range of motion (ROM) measurements. Results. Intraoperatively, established avascular necrosis of the proximal fragment was identified in ten scaphoids. All fractures united within 16 weeks, confirmed by CT. At a mean follow-up of 31 months (12 to 64), there were significant improvements in the Patient-Rated Wrist Evaluation, Mayo Wrist Score, abbreviated Disabilities of the Arm, Shoulder and Hand score, wrist ROM, grip strength, and the patients’ subjective pain score. No peri- or postoperative complications were encountered. Conclusion. Our data indicate that arthroscopic bone grafting and fixation with cancellous autograft is a viable method in the treatment of proximal third scaphoid nonunions, regardless of the vascularity of the proximal fragment. Cite this article: Bone Joint J 2022;104-B(8):946–952



Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


Bone & Joint 360
Vol. 13, Issue 2 | Pages 26 - 29
1 Apr 2024

The April 2024 Wrist & Hand Roundup. 360. looks at: Lunocapitate versus four-corner fusion in scapholunate or scaphoid nonunion advanced collapse: a randomized controlled trial; Postoperative scaphoid alignment, smoking, and avascular necrosis determine outcomes; Grip strength signals broader health concerns in females with distal radius fractures; Clearing the smoke: how smoking status influences recovery from open carpal tunnel release surgery; Age matters: assessing the likelihood of corrective surgery after distal radius fractures; Is pronator quadratus muscle repair required after anterior plate fixation for distal radius fractures?; Efficacy of total wrist arthroplasty: a comparative analysis of inflammatory and non-inflammatory arthritis outcomes; A comprehensive review of the one-bone forearm as a salvage technique


Bone & Joint Research
Vol. 11, Issue 5 | Pages 260 - 269
3 May 2022
Staats K Sosa BR Kuyl E Niu Y Suhardi V Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MPG Yang X

Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion. iPTH treatment mediated successful osseointegration and increased bone mechanical strength, despite initial implant instability. Clinically, this suggests that initially unstable implants may be osseointegrated with iPTH treatment. Cite this article: Bone Joint Res 2022;11(5):260–269


Bone & Joint 360
Vol. 13, Issue 2 | Pages 44 - 46
1 Apr 2024

The April 2024 Research Roundup. 360. looks at: Prevalence and characteristics of benign cartilaginous tumours of the shoulder joint; Is total-body MRI useful as a screening tool to rule out malignant progression in patients with multiple osteochondromas?; Effects of vancomycin and tobramycin on compressive and tensile strengths of antibiotic bone cement: a biomechanical study; Biomarkers for early detection of Charcot arthropathy; Strong association between growth hormone therapy and proximal tibial physeal avulsion fractures in children and adolescents; UK pregnancy in orthopaedics (UK-POP): a cross-sectional study of UK female trauma and orthopaedic surgeons and their experiences of pregnancy; Does preoperative weight loss change the risk of adverse outcomes in total knee arthroplasty by initial BMI classification?


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 193 - 199
1 Feb 2022
Wang Q Wang H A G Xiao T Kang P

Aims. This study aimed to use intraoperative free electromyography to examine how the placement of a retractor at different positions along the anterior acetabular wall may affect the femoral nerve during total hip arthroplasty (THA) when undertaken using the direct anterior approach (THA-DAA). Methods. Intraoperative free electromyography was performed during primary THA-DAA in 82 patients (94 hips). The highest position of the anterior acetabular wall was defined as the “12 o’clock” position (middle position) when the patient was in supine position. After exposure of the acetabulum, a retractor was sequentially placed at the ten, 11, 12, one, and two o’clock positions (right hip; from superior to inferior positions). Action potentials in the femoral nerve were monitored with each placement, and the incidence of positive reactions (defined as explosive, frequent, or continuous action potentials, indicating that the nerve was being compressed) were recorded as the primary outcome. Secondary outcomes included the incidence of positive reactions caused by removing the femoral head, and by placing a retractor during femoral exposure; and the incidence of femoral nerve palsy, as detected using manual testing of the strength of the quadriceps muscle. Results. Positive reactions were significantly less frequent when the retractor was placed at the ten (15/94; 16.0%), 11 (12/94; 12.8%), or 12 o’clock positions (19/94; 20.2%), than at the one (37/94; 39.4%) or two o’clock positions (39/94; 41.5%) (p < 0.050). Positive reactions also occurred when the femoral head was removed (28/94; 29.8%), and when a retractor was placed around the proximal femur (34/94; 36.2%) or medial femur (27/94; 28.7%) during femoral exposure. After surgery, no patient had reduced strength in the quadriceps muscle. Conclusion. Placing the anterior acetabular retractor at the one or two o’clock positions (right hip; inferior positions) during THA-DAA can increase the rate of electromyographic signal changes in the femoral nerve. Thus, placing a retractor in these positions may increased the risk of the development of a femoral nerve palsy. Cite this article: Bone Joint J 2022;104-B(2):193–199


Aims. The aim of this study was to assess and compare active rotation of the forearm in normal subjects after the application of a short-arm cast (SAC) in the semisupination position and a long-arm cast (LAC) in the neutral position. A clinical study was also conducted to compare the functional outcomes of using a SAC in the semisupination position with those of using a LAC in the neutral position in patients who underwent arthroscopic triangular fibrocartilage complex (TFCC) foveal repair. Methods. A total of 40 healthy right-handed volunteers were recruited. Active pronation and supination of the forearm were measured in each subject using a goniometer. In the retrospective clinical study, 40 patients who underwent arthroscopic foveal repair were included. The wrist was immobilized postoperatively using a SAC in the semisupination position (approximately 45°) in 16 patients and a LAC in 24. Clinical outcomes were assessed using grip strength and patient-reported outcomes. The degree of disability caused by cast immobilization was also evaluated when the cast was removed. Results. Supination was significantly more restricted with LACs than with SACs in the semisupination position in male and female patients (p < 0.001 for both). However, pronation was significantly more restricted with SACs in the semisupination position than with LACs in female patients (p = 0.003) and was not significantly different in male patients (p = 0.090). In the clinical study, both groups showed improvement in all parameters with significant differences in grip strength, visual analogue scale scores for pain, modified Mayo Wrist Score, the Disability of the Arm, Shoulder, and Hand (DASH) score, and the Patient-Rated Wrist Evaluation (PRWE) score. No significant postoperative differences were noted between LACs and SACs in the semisupination position. However, the disability caused by immobilization in a cast was significantly higher in patients who had a LAC on the dominant hand (p < 0.001). Conclusion. We found that a SAC in the semisupination position is as effective as a LAC in restricting pronation of the forearm. In addition, postoperative immobilization with a SAC in the semisupination position resulted in comparable pain scores and functional outcomes to immobilization with a LAC after TFCC foveal repair, with less restriction of daily activities. Therefore, we recommend that surgeons consider using a SAC in the semisupination position for postoperative immobilization following TFCC foveal repair for dorsal instability of the distal radioulnar joint. Cite this article: Bone Joint J 2022;104-B(2):249–256


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads. Results. Experimental pull-out strengths were excellently correlated to the µFE pull-out stiffness of the ROI (R. 2. > 0.87) and FV (R. 2. > 0.84) models. No significant difference due to screw design was observed. Cement augmentation increased pull-out stiffness by up to 94% and 48% for L and R screws, respectively, but only increased bending stiffness by up to 6.9% and 1.5%, respectively. Cementing involving only one screw tip resulted in lower stiffness increases in all tested screw designs and loading cases. The stiffening effect of cement augmentation on pull-out and bending stiffness was strongly and negatively correlated to local bone density around the screw (correlation coefficient (R) = -0.95). Conclusion. This combined experimental, µCT and µFE study showed that regional analyses may be sufficient to predict fixation strength in pull-out and that full analyses could show that cement augmentation around pedicle screws increased fixation stiffness in both pull-out and bending, especially for low-density bone. Cite this article: Bone Joint Res 2021;10(12):797–806


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims. Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results. Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion. Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes. Cite this article: Bone Joint Res 2023;12(5):339–351


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733