Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article:
Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis.Aims
Methods
The aim of this study was to use diffusion tensor imaging (DTI) to investigate changes in diffusion metrics in patients with cervical spondylotic myelopathy (CSM) up to five years after decompressive surgery. We correlated these changes with clinical outcomes as scored by the Modified Japanese Orthopedic Association (mJOA) method, Neck Disability Index (NDI), and Visual Analogue Scale (VAS). We used multi-shot, high-resolution, diffusion tensor imaging (ms-DTI) in patients with cervical spondylotic myelopathy (CSM) to investigate the change in diffusion metrics and clinical outcomes up to five years after anterior cervical interbody discectomy and fusion (ACDF). High signal intensity was identified on T2-weighted imaging, along with DTI metrics such as fractional anisotropy (FA). MJOA, NDI, and VAS scores were also collected and compared at each follow-up point. Spearman correlations identified correspondence between FA and clinical outcome scores.Aims
Methods
The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.Aims
Methods
Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on
Aims
Methods
Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture.Aims
Methods
To investigate metallosis in patients with magnetically controlled growing rods (MCGRs) and characterize the metal particle profile of the tissues surrounding the rod. This was a prospective observational study of patients with early onset scoliosis (EOS) treated with MCGRs and undergoing rod exchange who were consecutively recruited between February 2019 and January 2020. Ten patients were recruited (mean age 12 years (SD 1.3); 2 M:8 F). The configurations of the MCGR were studied to reveal the distraction mechanisms, with crucial rod parts being the distractable piston rod and the magnetically driven rotor inside the barrel of the MCGR. Metal-on-metal contact in the form of ring-like wear marks on the piston was found on the distracted portion of the piston immediately outside the barrel opening (BO) through which the piston rod distracts. Biopsies of paraspinal muscles and control tissue samples were taken over and away from the wear marks, respectively. Spectral analyses of the rod alloy and biopsies were performed to reveal the metal constituents and concentrations. Histological analyses of the biopsies were performed with haematoxylin and eosin staining.Aims
Methods
Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the migration of cementless, 3D-printed TKA to cemented TKA of a similar design up to two years of follow-up using radiostereometric analysis (RSA) known for its ability to predict aseptic loosening. A total of 72 patients were randomized to either cementless 3D-printed or a cemented cruciate retaining TKA. RSA and clinical scores were evaluated at baseline and postoperatively at three, 12, and 24 months. A mixed model was used to analyze the repeated measurements.Aims
Methods
We have previously demonstrated raised cobalt and chromium levels in patients with larger diameter femoral heads, following metal-on-polyethylene uncemented total hip arthroplasty. Further data have been collected, to see whether these associations have altered with time and to determine the long-term implications for these patients and our practice. Patients from our previous study who underwent Trident-Accolade primary total hip arthroplasties using a metal-on-polyethylene bearing in 2009 were reviewed. Patients were invited to have their cobalt and chromium levels retested, and were provided an Oxford Hip Score. Serum ion levels were then compared between groups (28 mm, 36 mm, and 40 mm heads) and over time.Aims
Methods
This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.Aims
Methods
The aim of this study was to compare the osseous reactions elicited by all-suture, polyetheretherketone (PEEK), and two different biodegradable anchors used during rotator cuff repair. Transosseous-equivalent rotator cuff repair was performed in 73 patients. The patients were divided into two groups, in both of which two different medial-row anchors were used. In group 1, anchor A comprised 30% β-tricalcium phosphate (TCP) + 70% fast-absorbing poly lactic-co-glycolic acid copolymer (85% polylactic acid enantiomers + 15% polyglycolic acid) and anchor B comprised all-sutures. In group 2, anchor C comprised 23% micro β-TCP + 77% polylactic acid enantiomers and anchor D comprised PEEK polymer. There were 37 patients in group 1 and 36 patients in group 2. The presence and severity of fluid collection around anchors and healing of the rotator cuff were assessed using MRI scans, approximately one year postoperatively. The severity of the collection was graded as 0 (no perianchor fluid signal), 1 (minimal perianchor fluid), 2 (local collection of fluid), 3 (fluid collection around the whole length of the anchor but of a diameter less than twice the anchor diameter), or 4 (fluid collection around the whole length of the anchor and of a diameter greater than twice the anchor diameter).Aims
Patients and Methods
Using a simple classification method, we aimed to estimate the collapse rate due to osteonecrosis of the femoral head (ONFH) in order to develop treatment guidelines for joint-preserving surgeries. We retrospectively analyzed 505 hips from 310 patients (141 men, 169 women; mean age 45.5 years Objectives
Methods
We analyzed the long-term outcomes of patients observed over ten years after resection en bloc and reconstruction with extracorporeal irradiated autografts This retrospective study included 27 patients who underwent resection en bloc and reimplantation of an extracorporeal irradiated autograft. The mean patient age and follow-up period were 31.7 years (9 to 59) and 16.6 years (10.3 to 24.3), respectively. The most common diagnosis was osteosarcoma (n = 10), followed by chondrosarcoma (n = 6). The femur (n = 13) was the most frequently involved site, followed by the tibia (n = 7). There were inlay grafts in five patients, intercalary grafts in 15 patients, and osteoarticular grafts in seven patients. Functional outcome was evaluated with the Musculoskeletal Tumor Society (MSTS) scoring system.Aims
Patients and Methods
Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis.Aims
Patients and Methods
Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (Aims
Patients and Methods
The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).Aims
Materials and Methods
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.
Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell ( This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m2 and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (Aims
Patients and Methods