Advertisement for orthosearch.org.uk
Results 61 - 80 of 644
Results per page:
Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article: Bone Joint Res 2020;9(7):368–385


Bone & Joint Research
Vol. 6, Issue 12 | Pages 656 - 664
1 Dec 2017
Morita W Dakin SG Snelling SJB Carr AJ

Objectives. Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified. Methods. We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included. Results. IL-1β, IL-6, IL-10, and TNF-α are the cytokines that have been most frequently investigated. In clinical samples of tendinopathy and tendon tears, the expression of TNF-α tended not to change but IL-6 increased in tears. Healthy human tendons showed increased IL-6 expression after exercise; however, IL-10 remained unchanged. Animal tendon injury models showed that IL-1β, IL-6, and TNF-α tend to increase from the early phase of tendon healing. In animal exercise studies, IL-1β expression showed a tendency to increase at the early stage after exercise, but IL-10 expression remained unchanged with exercise. Conclusions. This review highlights the roles of IL-1β, IL-6, IL-10, and TNF-α in the development of tendon disease, during tendon healing, and in response to exercise. However, there is evidence accumulating that suggests that other cytokines are also contributing to tendon inflammatory processes. Further work with hypothesis-free methods is warranted in order to identify the key cytokines, with subsequent mechanistic and interaction studies to elucidate their roles in tendon disease development. Cite this article: W. Morita, S. G. Dakin, S. J. B. Snelling, A. J. Carr. Cytokines in tendon disease: A Systematic Review. Bone Joint Res 2017;6:656–664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1


Bone & Joint Research
Vol. 9, Issue 7 | Pages 394 - 401
1 Jul 2020
Blirup-Plum SA Bjarnsholt T Jensen HE Kragh KN Aalbæk B Gottlieb H Bue M Jensen LK

Aims. CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model. Methods. Osteomyelitis was induced in nine pigs by inoculation of 10. 4. colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention. Results. All animals presented confirmatory signs of bone infection post-mortem. The estimated amount of inflammation was substantially greater in Groups A and B compared to Group C. In both Groups B and C, peptide nucleic acid fluorescence in situ hybridization (PNA FISH) of CERAMENT|G and surrounding bone tissue revealed bacteria embedded in an opaque matrix, i.e. within biofilm. In addition, in Group C, the maximal measured post-mortem gentamicin concentrations in CERAMENT|G and surrounding bone tissue samples were 16.6 μg/ml and 6.2 μg/ml, respectively. Conclusion. The present study demonstrates that CERAMENT|G cannot be used as a standalone alternative to extensive debridement or be used without the addition of systemic antimicrobials. Cite this article: Bone Joint Res 2020;9(7):394–401


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1375 - 1383
3 Oct 2020
Zhang T Sze KY Peng ZW Cheung KMC Lui YF Wong YW Kwan KYH Cheung JPY

Aims. To investigate metallosis in patients with magnetically controlled growing rods (MCGRs) and characterize the metal particle profile of the tissues surrounding the rod. Methods. This was a prospective observational study of patients with early onset scoliosis (EOS) treated with MCGRs and undergoing rod exchange who were consecutively recruited between February 2019 and January 2020. Ten patients were recruited (mean age 12 years (SD 1.3); 2 M:8 F). The configurations of the MCGR were studied to reveal the distraction mechanisms, with crucial rod parts being the distractable piston rod and the magnetically driven rotor inside the barrel of the MCGR. Metal-on-metal contact in the form of ring-like wear marks on the piston was found on the distracted portion of the piston immediately outside the barrel opening (BO) through which the piston rod distracts. Biopsies of paraspinal muscles and control tissue samples were taken over and away from the wear marks, respectively. Spectral analyses of the rod alloy and biopsies were performed to reveal the metal constituents and concentrations. Histological analyses of the biopsies were performed with haematoxylin and eosin staining. Results. Titanium (Ti), vanadium (V), and neodymium (Nd) concentrations in the biopsies taken near the wear marks were found to be significantly higher than those in the control tissue samples. Significantly increased Nd concentrations were also found in the tissues near the barrel of the MCGR. Chronic inflammation was revealed by the histological studies with fibrosis and macrophage infiltration. Black particles were present within the macrophages in the fibrotic tissues. Conclusion. Ti and V were generated mainly at the BO due to metal-on-metal contact, whereas the Nd from the rotor of the MCGR is likely released from the BO during distraction sessions. Phagocytotic immune cells with black particles inside raise concern regarding the long-term implications of metallosis. Cite this article: Bone Joint J 2020;102-B(10):1375–1383


Aims. The aim of this study was to examine the efficacy and safety of multiple boluses of intravenous (IV) tranexamic acid (TXA) on the hidden blood loss (HBL) and inflammatory response following primary total hip arthroplasty (THA). Patients and Methods. A total of 150 patients were allocated randomly to receive a single bolus of 20 mg/kg IV TXA before the incision (group A), a single bolus followed by a second bolus of 1 g IV-TXA three hours later (group B) or a single bolus followed by two boluses of 1 g IV-TXA three and six hours later (group C). All patients were treated using a standard peri-operative enhanced recovery protocol. Primary outcomes were HBL and the level of haemoglobin (Hb) as well as the levels of C-reactive protein (CRP) and interleukin-6 (IL-6) as markers of inflammation. Secondary outcomes included the length of stay in hospital and the incidence of venous thromboembolism (VTE). Results. The mean HBL was significantly lower in group C (402.13 ml standard deviation (. sd). 225.97) than group A (679.28 ml. sd. 277.16, p < 0.001) or B (560.62 ml . sd. 295.22, p = 0.010). The decrease in the level of Hb between the pre-operative baseline and the level on the third post-operative day was 30.82 g/L (. sd. 6.31 g/L) in group A, 27.16 g/L (. sd. 6.83) in group B and 21.98 g/L (. sd. 3.72) in group C. This decrease differed significantly among the three groups (p < 0.01). The mean level of CRP was significantly lower in group C than in the other two groups on the second (p ≤ 0.034) and third post-operative days (p ≤ 0.014). The levels of IL-6 were significantly lower in group C than group A on the first three post-operative days (p = 0.023). The mean length of stay was significantly lower in group C than group A (p = 0.023). No VTE or other adverse events occurred. Conclusion. Multiple boluses of IV-TXA can effectively reduce HBL following primary THA. A regime of three boluses leads to a smaller decrease in the level of Hb, less post-operative inflammation and a shorter length of stay in hospital than a single bolus. Cite this article: Bone Joint J 2017;99-B:1442–9


Bone & Joint Research
Vol. 8, Issue 12 | Pages 582 - 592
1 Dec 2019
Sansone V Applefield RC De Luca P Pecoraro V Gianola S Pascale W Pascale V

Aims. The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. Methods. A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported. Results. In total, 14 publications met our inclusion criteria and were included in our review. Our meta-analysis showed that, when measured by the modified Mankin Histological-Histochemical Grading System, there was a significantly higher rate of OA in mice fed a HFD than in mice on a CD (standardized mean difference (SMD) 1.27, 95% confidence interval (CI) 0.63 to 1.91). Using the Osteoarthritis Research Society International (OARSI) score, there was a trend towards HFD causing OA (SMD 0.78, 95% CI -0.04 to 1.61). In terms of OA progression, a HFD consistently worsened the progression of surgically induced OA when compared with a CD. Finally, numerous inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and leptin, among others, were found to be altered by a HFD. Conclusion. A HFD seems to induce or exacerbate the progression of OA in mice. The metabolic changes and systemic inflammation brought about by a HFD appear to be key players in the onset and progression of OA. Cite this article: Bone Joint Res 2019;8:582–592


Bone & Joint Research
Vol. 6, Issue 7 | Pages 446 - 451
1 Jul 2017
Pękala PA Henry BM Pękala JR Piska K Tomaszewski KA

Objectives. Inflammation of the retrocalcaneal bursa (RB) is a common clinical problem, particularly in professional athletes. RB inflammation is often treated with corticosteroid injections however a number of reports suggest an increased risk of Achilles tendon (AT) rupture. The aim of this cadaveric study was to describe the anatomical connections of the RB and to investigate whether it is possible for fluid to move from the RB into AT tissue. Methods. A total of 20 fresh-frozen AT specimens were used. In ten specimens, ink was injected into the RB. The remaining ten specimens were split into two groups to be injected with radiological contrast medium into the RB either with or without ultrasonography guidance (USG). Results. In specimens injected with ink, diffusion outside the RB was observed with staining of the anterior portion of the AT. In eight contrast-injected specimens (five USG, three non-USG), a similar localised diffusion pattern was observed, with the contrast identified superiorly and anteriorly. In two contrast-injected specimens (non-USG), the diffusion pattern was more extensive. Conclusion. This study confirmed the existence of connections between the RB and the AT, especially rich in the anteroinferior portion of the tendon, which should be considered a weak zone for substances injected into the RB. We hypothesise that this part of the AT might be most vulnerable to rupture after corticosteroid injections. Cite this article: P. A. Pękala, B. M. Henry, J. R. Pękala, K. Piska, K. A. Tomaszewski. The Achilles tendon and the retrocalcaneal bursa: An anatomical and radiological study. Bone Joint Res 2017;6:446–451. DOI:10.1302/2046-3758.67.BJR-2016-0340.R1


Bone & Joint Research
Vol. 5, Issue 5 | Pages 162 - 168
1 May 2016
Athanasou NA

Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086


Bone & Joint Research
Vol. 3, Issue 4 | Pages 108 - 116
1 Apr 2014
Cheng K Giebaly D Campbell A Rumley A Lowe G

Objective. Mortality rates reported by the National Joint Registry for England and Wales (NJR) were higher following cemented total knee replacement (TKR) compared with uncemented procedures. The aim of this study is to examine and compare the effects of cemented and uncemented TKR on the activation of selected markers of inflammation, endothelium, and coagulation, and on the activation of selected cytokines involved in the various aspects of the systemic response following surgery. Methods. This was a single centre, prospective, case-control study. Following enrolment, blood samples were taken pre-operatively, and further samples were collected at day one and day seven post-operatively. One patient in the cemented group developed a deep-vein thrombosis confirmed on ultrasonography and was excluded, leaving 19 patients in this cohort (mean age 67.4, (. sd. 10.62)), and one patient in the uncemented group developed a post-operative wound infection and was excluded, leaving 19 patients (mean age 66.5, (. sd. 7.82)). Results. Both groups had a similar response with regards to the levels of C-reactive protein (CRP), interleukin 6 (IL-6) and tumour necrosis factor-alpha (TNFα). CD40 levels rose significantly on the cemented group over day one to day seven compared with that of the uncemented group, which occurred over the first 24 hours. The CD14/42a levels demonstrated a statistically significant increase in the cemented group (p < 0.001 first 24 hours and p = 0.02 between days one and seven). . Conclusions. The uncemented and cemented groups demonstrated significant changes in the various parameters measured at various time points but apart from CD14/42a levels, there was no significant difference in the serum markers of inflammation, coagulation and endothelial dysfunction following cemented TKR. Cite this article: Bone Joint Res 2014;3:108–16


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives. Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes. Methods. A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage. Results. The HFS diet, in the absence of trauma, resulted in increased joint damage in the shoulder and knee joints of rats. Hip joint damage, however, was not significantly affected by DIO, consistent with findings in human studies. The total Mankin score was increased in DIO animals compared with the chow group, and was associated with percentage of body fat. Positive significant predictive relationships for total Mankin score were found between body fat and two serum mediators (interleukin 1 alpha (IL-1α) and vascular endothelial growth factor (VEGF)). Conclusion. Systemic inflammatory alterations from DIO in this model system may result in a higher risk for development of knee, shoulder, and multi-joint damage with a HFS diet. Cite this article: K. H. Collins, D. A. Hart, R. A. Seerattan, R. A. Reimer, W. Herzog. High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model. Bone Joint Res 2018;7:274–281. DOI: 10.1302/2046-3758.74.BJR-2017-0201.R2


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims

This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients.

Methods

A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 133 - 137
10 Feb 2023
Liao H Tsai C

Aims

To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment.

Methods

We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood mononuclear cells (PBMCs) were marked with anti-CD4, anti-CD25, and anti-FoxP3 antibodies, and triple positive T cells were gated by flow cytometry as T-regs. Their correlations were calculated and the changes after anti-TNF-α therapy were compared.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims

Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA.

Methods

First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 862 - 872
1 Dec 2022
Wang M Tan G Jiang H Liu A Wu R Li J Sun Z Lv Z Sun W Shi D

Aims

Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA.

Methods

We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 555 - 564
1 Jun 2024
Leal J Holland CT Cochrane NH Seyler TM Jiranek WA Wellman SS Bolognesi MP Ryan SP

Aims

This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection.

Methods

A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response