This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model. A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis.Aims
Methods
The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates. A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed.Aims
Methods
This study aimed to compare mortality in trochanteric AO/OTA A1 and A2 fractures treated with an intramedullary nail (IMN) or sliding hip screw (SHS). The primary endpoint was 30-day mortality, with secondary endpoints at 0 to 1, 2 to 7, 8 to 30, 90, and 365 days. We analyzed data from 26,393 patients with trochanteric AO/OTA A1 and A2 fractures treated with IMNs (n = 9,095) or SHSs (n = 17,298) in the Norwegian Hip Fracture Register (January 2008 to December 2020). Exclusions were made for patients aged < 60 years, pathological fractures, pre-2008 operations, contralateral hip fractures, fractures other than trochanteric A1/A2, and treatments other than IMNs or SHSs. Kaplan-Meier and Cox regression analyses adjusted for type of fracture, age, sex, cognitive impairment, American Society of Anesthesiologists (ASA) grade, and time period were conducted, along with calculations for number needed to harm (NNH).Aims
Methods
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
The open Latarjet procedure is a widely used treatment for recurrent anterior instability of the shoulder. Although satisfactory outcomes are reported, factors which influence a patient’s experience are poorly quantified. The aim of this study was to evaluate the effect of a range of demographic factors and measures of the severity of instability on patient-reported outcome measures in patients who underwent an open Latarjet procedure at a minimum follow-up of two years. A total of 350 patients with anterior instability of the shoulder who underwent an open Latarjet procedure between 2005 and 2018 were reviewed prospectively, with the collection of demographic and psychosocial data, preoperative CT, and complications during follow-up of two years. The primary outcome measure was the Western Ontario Shoulder Instability Index (WOSI), assessed preoperatively, at two years postoperatively, and at mid-term follow-up at a mean of 50.6 months (SD 24.8) postoperatively. The secondary outcome measure was the abbreviated version of the Disabilities of the Arm, Shoulder and Hand (QuickDASH) score. The influence of the demographic details of the patients, measurements of the severity of instability, and the complications of surgery were assessed in a multivariate analysis.Aims
Methods
The aim of this study was to investigate the feasibility of application of a 3D-printed megaprosthesis with hemiarthroplasty design for defects of the distal humerus or proximal ulna following tumour resection. From June 2018 to January 2020, 13 patients with aggressive or malignant tumours involving the distal humerus (n = 8) or proximal ulna (n = 5) were treated by en bloc resection and reconstruction with a 3D-printed megaprosthesis with hemiarthroplasty, designed in our centre. In this paper, we summarize the baseline and operative data, oncological outcome, complication profiles, and functional status of these patients.Aims
Methods
To identify a core outcome set of postoperative radiographic measurements to assess technical skill in ankle fracture open reduction internal fixation (ORIF), and to validate these against Van der Vleuten’s criteria for effective assessment. An e-Delphi exercise was undertaken at a major trauma centre (n = 39) to identify relevant parameters. Feasibility was tested by two authors. Reliability and validity was tested using postoperative radiographs of ankle fracture operations performed by trainees enrolled in an educational trial (IRCTN 20431944). To determine construct validity, trainees were divided into novice (performed < ten cases at baseline) and intermediate groups (performed ≥ ten cases at baseline). To assess concurrent validity, the procedure-based assessment (PBA) was considered the gold standard. The inter-rater and intrarater reliability was tested using a randomly selected subset of 25 cases.Aims
Methods
A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting. This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.Aims
Methods
We performed a CT-based computer
The use of 3D printing has become increasingly popular and has been widely used in orthopaedic surgery. There has been a trend towards an increasing number of publications in this field, but existing literature incorporates limited high-quality studies, and there is a lack of reports on outcomes. The aim of this study was to perform a scoping review with Level I evidence on the application and effectiveness of 3D printing. A literature search was performed in PubMed, Embase, and Web of Science databases. The keywords used for the search criteria were ((3d print*) OR (rapid prototyp*) OR (additive manufactur*)) AND (orthopaedic). The inclusion criteria were: 1) use of 3D printing in orthopaedics, 2) randomized controlled trials, and 3) studies with participants/patients. Risk of bias was assessed with Cochrane Collaboration Tool and PEDro Score. Pooled analysis was performed.Aims
Methods
Public disclosure of outcome-orientated ranking of hospitals is becoming increasingly popular and is routinely used by Swedish health-care authorities. Whereas uncertainty about an outcome is usually presented with 95% confidence intervals, ranking’s based on the same outcome are typically presented without any concern for bias or statistical precision. In order to study the effect of incomplete registration of re-operation on hospital ranking we performed a
One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).Aims
Methods
Objectives. Third-body wear is believed to be one trigger for adverse results
with metal-on-metal (MOM) bearings. Impingement and subluxation
may release metal particles from MOM replacements. We therefore
challenged MOM bearings with relevant debris types of cobalt–chrome
alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate
bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range
5 µm to 400 µm) were run in a MOM wear
This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.Aims
Methods
In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.Aims
Methods