Advertisement for orthosearch.org.uk
Results 61 - 62 of 62
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 527 - 534
1 Apr 2010
Streubel PN Gardner MJ Morshed S Collinge CA Gallagher B Ricci WM

It is unclear whether there is a limit to the amount of distal bone required to support fixation of supracondylar periprosthetic femoral fractures. This retrospective multicentre study evaluated lateral locked plating of periprosthetic supracondylar femoral fractures and compared the results according to extension of the fracture distal with the proximal border of the femoral prosthetic component.

Between 1999 and 2008, 89 patients underwent lateral locked plating of a supracondylar periprosthetic femoral fracture, of whom 61 patients with a mean age of 72 years (42 to 96) comprising 53 women, were available after a minimum follow-up of six months or until fracture healing. Patients were grouped into those with fractures located proximally (28) and those with fractures that extended distal to the proximal border of the femoral component (33).

Delayed healing and nonunion occurred respectively in five (18%) and three (11%) of more proximal fractures, and in two (6%) and five (15%) of the fractures with distal extension (p = 0.23 for delayed healing; p = 0.72 for nonunion, Fisher’s exact test). Four construct failures (14%) occurred in more proximal fractures, and three (9%) in fractures with distal extension (p = 0.51). Of the two deep infections that occurred in each group, one resolved after surgical debridement and antibiotics, and one progressed to a nonunion.

Extreme distal periprosthetic supracondylar fractures of the femur are not a contra-indication to lateral locked plating. These fractures can be managed with internal fixation, with predictable results, similar to those seen in more proximal fractures.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1425 - 1429
1 Nov 2006
Old AB McGrory BJ White RR Babikian GM

The use of allograft struts and cerclage wire, possibly augmented by plate fixation, for the treatment of Vancouver type-B1 peri-prosthetic fractures around a total hip replacement has been strongly advocated. We examined our results using plate fixation without allograft struts and compared them with the results of the use of struts alone or when combined with plate fixation. Of 20 consecutive patients with type-B1 fractures treated by open reduction and plate fixation, 19 were available for follow-up. The fractures healed in 18 patients with a mean time to weight-bearing of ten weeks (4 to 19). There were no cases of infection or malunion. Nonunion occurred in one patient and required a second plate fixation to achieve union.

Safe, cost-effective treatment of Vancouver type-B1 fractures can be performed by plate fixation without the addition of cortical struts. This procedure may allow earlier weight-bearing than allograft strut fixation alone.