Advertisement for orthosearch.org.uk
Results 621 - 640 of 1009
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 49 - 55
1 Apr 2017
Hossain F Konan S Volpin A Haddad FS

Aims

The aim of this study was to compare early functional and health related quality of life outcomes (HRQoL) in patients who have undergone total hip arthroplasty (THA) using a bone conserving short stem femoral component and those in whom a conventional length uncemented component was used. Outcome was assessed using a validated performance based outcome instrument as well as patient reported outcome measures (PROMs).

Patients and Methods

We prospectively analysed 33 patients whose THA involved a contemporary proximally porous coated tapered short stem femoral component and 53 patients with a standard conventional femoral component, at a minimum follow-up of two years. The mean follow-up was 31.4 months (24 to 39). Patients with poor proximal femoral bone quality were excluded. The mean age of the patients was 66.6 years (59 to 77) and the mean body mass index was 30.2 kg/m2 (24.1 to 41.0). Outcome was assessed using the Oxford Hip Score (OHS) and the University College Hospital (UCH) hip score which is a validated performance based instrument. HRQoL was assessed using the EuroQol 5D (EQ-5D).


Bone & Joint 360
Vol. 6, Issue 1 | Pages 34 - 36
1 Feb 2017


Bone & Joint 360
Vol. 4, Issue 6 | Pages 26 - 27
1 Dec 2015

The December 2015 Children’s orthopaedics Roundup360 looks at: Paediatric femoral fractures: a single incision nailing?; Lateral condylar fractures: open or percutaneous?;

Forearm refracture: the risks; Tibial spine fractures; The child’s knee in MRI; The mechanics of SUFE; Idiopathic clubfoot


Objectives

The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage.

Methods

Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 283 - 288
1 Feb 2017
Hughes A Heidari N Mitchell S Livingstone J Jackson M Atkins R Monsell F

Aims

Computer hexapod assisted orthopaedic surgery (CHAOS), is a method to achieve the intra-operative correction of long bone deformities using a hexapod external fixator before definitive internal fixation with minimally invasive stabilisation techniques.

The aims of this study were to determine the reliability of this method in a consecutive case series of patients undergoing femoral deformity correction, with a minimum six-month follow-up, to assess the complications and to define the ideal group of patients for whom this treatment is appropriate.

Patients and Methods

The medical records and radiographs of all patients who underwent CHAOS for femoral deformity at our institution between 2005 and 2011 were retrospectively reviewed. Records were available for all 55 consecutive procedures undertaken in 49 patients with a mean age of 35.6 years (10.9 to 75.3) at the time of surgery.


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 303 - 309
1 Mar 2017
Beaulé PE Bleeker H Singh A Dobransky J

Aims

Joint-preserving surgery of the hip (JPSH) has evolved considerably and now includes a number of procedures, including arthroscopy, surgical dislocation, and redirectional osteotomies of the femur and acetabulum. There are a number of different factors which lead to failure of JPSH. Consequently, it is of interest to assess the various modes of failure in order to continue to identify best practice and the indications for these procedures.

Patients and Methods

Using a retrospective observational study design, we reviewed 1013 patients who had undergone JPSH by a single surgeon between 2005 and 2015. There were 509 men and 504 women with a mean age of 39 years (16 to 78). Of the 1013 operations, 783 were arthroscopies, 122 surgical dislocations, and 108 peri-acetabular osteotomies (PAO). We analysed the overall failure rates and modes of failure. Re-operations were categorised into four groups: Mode 1 was arthritis progression or organ failure leading to total hip arthroplasty (THA); Mode 2 was an Incorrect diagnosis/procedure; Mode 3 resulted from malcorrection of femur (type A), acetabulum (type B), or labrum (type C) and Mode 4 resulted from an unintended consequence of the initial surgical intervention.


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 409 - 416
1 Mar 2017
Scholfield DW Sadozai Z Ghali C Sumathi V Douis H Gaston L Grimer RJ Jeys L

Aims

The aim of this study was to identify any progression between benign osteofibrous dysplasia (OFD), OFD-like adamantinoma and malignant adamantinoma, and to investigate the rates of local recurrence, metastases and survival, in order to develop treatment algorithms for each.

Patients and Methods

A single institution retrospective review of all patients presenting with OFD, OFD-like adamantinoma and adamantinoma between 1973 and 2012 was undertaken. Complete data were available for 73 patients (42 with OFD; ten with an OFD-like adamantinoma and 21 with an adamantinoma). The mean follow-up was 10.3 years (3 to 25) for OFD, 9.2 years (3.0 to 26.3) for OFD-like and 11.6 years (0.25 to 33) for adamantinoma.


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 344 - 350
1 Mar 2017
Metcalfe AJ Clark DA Kemp MA Eldridge JD

Aims

The Bereiter trochleoplasty has been used in our unit for 12 years to manage recurrent patellar instability in patients with severe trochlea dysplasia. The aim of this study was to document the outcome of a large consecutive cohort of patients who have undergone this operation.

Patients and Methods

Between June 2002 and August 2013, 214 consecutive trochleoplasties were carried out in 185 patients. There were 133 women and 52 men with a mean age of 21.3 years (14 to 38). All patients were offered yearly clinical and radiological follow-up. They completed the following patient reported outcome scores (PROMs): International Knee Documentation Committee subjective scale, the Kujala score, the Western Ontario and McMaster Universities Arthritis Index score and the short-form (SF)-12.


Aims

The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft-tissue complications associated with socket prostheses and by improving sensory feedback and function. It relies on the formation of a seal between the soft tissues and the implant and currently has a flange with drilled holes to promote dermal attachment. Despite this, infection remains a significant risk. This study explored alternative strategies to enhance soft-tissue integration.

Materials and Methods

The effect of ITAP pins with a fully porous titanium alloy flange with interconnected pores on soft-tissue integration was investigated. The flanges were coated with fibronectin-functionalised hydroxyapatite and silver coatings, which have been shown to have an antibacterial effect, while also promoting viable fibroblast growth in vitro. The ITAP pins were implanted along the length of ovine tibias, and histological assessment was undertaken four weeks post-operatively.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 179 - 185
1 Mar 2017
Wu JH Thoreson AR Gingery A An KN Moran SL Amadio PC Zhao C

Objectives

The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model.

Methods

Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 60 - 64
1 Jan 2017
Lange J Haas SB

Valgus knee deformity can present a number of unique surgical challenges for the total knee arthroplasty (TKA) surgeon. Understanding the typical patterns of bone and soft-tissue pathology in the valgus arthritic knee is critical for appropriate surgical planning. This review aims to provide the knee arthroplasty surgeon with an understanding of surgical management strategies for the treatment of valgus knee arthritis.

Lateral femoral and tibial deficiencies, contracted lateral soft tissues, attenuated medial soft tissues, and multiplanar deformities may all be present in the valgus arthritic knee. A number of classifications have been reported in order to guide surgical management, and a variety of surgical strategies have been described with satisfactory clinical results. Depending on the severity of the deformity, a variety of TKA implant designs may be appropriate for use.

Regardless of an operating surgeon’s preferred surgical strategy, adherence to a step-wise approach to deformity correction is advised.

Cite this article: Bone Joint J 2017;99-B(1 Supple A):60–4.


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 25 - 30
1 Jan 2017
Waddell BS Della Valle AG

This review summarises the technique of impaction grafting with mesh augmentation for the treatment of uncontained acetabular defects in revision hip arthroplasty.

The ideal acetabular revision should restore bone stock, use a small socket in the near-anatomic position, and provide durable fixation. Impaction bone grafting, which has been in use for over 40 years, offers the ability to achieve these goals in uncontained defects. The precepts of modern, revision impaction grafting are that the segmental or cavitary defects must be supported with a mesh; the contained cavity is filled with vigorously impacted morselised fresh-frozen allograft; and finally, acrylic cement is used to stabilise the graft and provide rigid, long-lasting fixation of the revised acetabular component.

Favourable results have been published with this technique. While having its limitations, it is a viable option to address large acetabular defects in revision arthroplasty.

Cite this article: Bone Joint J 2017;99-B(1 Supple A):25–30.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives

After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP).

Methods

Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 162 - 168
1 May 2016
Athanasou NA

Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.

Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1710 - 1717
1 Dec 2015
Nicholson AD Sanders JO Liu RW Cooperman DR

The accurate assessment of skeletal maturity is essential in the management of orthopaedic conditions in the growing child. In order to identify the time of peak height velocity (PHV) in adolescents, two systems for assessing skeletal maturity have been described recently; the calcaneal apophyseal ossification method and the Sanders hand scores.

The purpose of this study was to compare these methods in assessing skeletal maturity relative to PHV. We studied the radiographs of a historical group of 94 healthy children (49 females and 45 males), who had been followed longitudinally between the ages of three and 18 years with serial radiographs and physical examination. Radiographs of the foot and hand were undertaken in these children at least annually between the ages of ten and 15 years. We reviewed 738 radiographs of the foot and 694 radiographs of the hand. PHV was calculated from measurements of height taken at the time of the radiographs.

Prior to PHV we observed four of six stages of calcaneal apophyseal ossification and two of eight Sanders stages. Calcaneal stage 3 and Sanders stage 2 was seen to occur about 0.9 years before PHV, while calcaneal stage 4 and Sanders stage 3 occurred approximately 0.5 years after PHV.

The stages of the calcaneal and Sanders systems can be used in combination, offering better assessment of skeletal maturity with respect to PHV than either system alone.

Cite this article: Bone Joint J 2015;97-B:1710–17.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives

Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments.

Materials and Methods

Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.


Bone & Joint 360
Vol. 5, Issue 1 | Pages 16 - 18
1 Feb 2016


Bone & Joint Research
Vol. 5, Issue 5 | Pages 198 - 205
1 May 2016
Wang WJ Liu F Zhu Y Sun M Qiu Y Weng WJ

Objectives

Normal sagittal spine-pelvis-lower extremity alignment is crucial in humans for maintaining an ergonomic upright standing posture, and pathogenesis in any segment leads to poor balance. The present study aimed to investigate how this sagittal alignment can be affected by severe knee osteoarthritis (KOA), and whether associated changes corresponded with symptoms of lower back pain (LBP) in this patient population.

Methods

Lateral radiograph films in an upright standing position were obtained from 59 patients with severe KOA and 58 asymptomatic controls free from KOA. Sagittal alignment of the spine, pelvis, hip and proximal femur was quantified by measuring several radiographic parameters. Global balance was accessed according to the relative position of the C7 plumb line to the sacrum and femoral heads. The presence of chronic LBP was documented. Comparisons between the two groups were carried by independent samples t-tests or chi-squared test.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives

Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model.

Methods

Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant.