Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
Matrix metalloproteinases (MMPs), responsible
for extracellular matrix remodelling and angiogenesis, might play
a major role in the response of the growth plate to detrimental
loads that lead to overuse injuries in young athletes. In order
to test this hypothesis, human growth plate chondrocytes were subjected
to mechanical forces equal to either physiological loads, near detrimental
or detrimental loads for two hours. In addition, these cells were
exposed to physiological loads for up to 24 hours. Changes in the
expression of MMPs -2, -3 and -13 were investigated. We found that expression of MMPs in cultured human growth plate
chondrocytes increases in a linear manner with increased duration
and intensity of loading. We also showed for the first time that
physiological loads have the same effect on growth plate chondrocytes
over a long period of time as detrimental loads applied for a short
period. These findings confirm the involvement of MMPs in overuse injuries
in children. We suggest that training programmes for immature athletes
should be reconsidered in order to avoid detrimental stresses and
over-expression of MMPs in the growth plate, and especially to avoid
physiological loads becoming detrimental. Cite this article:
Disruption of the extensor mechanism in total
knee arthroplasty may occur by tubercle avulsion, patellar or quadriceps
tendon rupture, or patella fracture, and whether occurring intra-operatively
or post-operatively can be difficult to manage and is associated
with a significant rate of failure and associated complications.
This surgery is frequently performed in compromised tissues, and
repairs must frequently be protected with cerclage wiring and/or
augmentation with local tendon (semi-tendinosis, gracilis) which
may also be used to treat soft-tissue loss in the face of chronic
disruption. Quadriceps rupture may be treated with conservative
therapy if the patient retains active extension. Component loosening
or loss of active extension of 20° or greater are clear indications
for surgical treatment of patellar fracture. Acute patellar tendon
disruption may be treated by primary repair. Chronic extensor failure
is often complicated by tissue loss and retraction can be treated
with medial gastrocnemius flaps, achilles tendon allografts, and
complete extensor mechanism allografts. Attention to fixing the
graft in full extension is mandatory to prevent severe extensor
lag as the graft stretches out over time.
Neurogenic heterotopic ossification (NHO) is
a disorder of aberrant bone formation affecting one in five patients sustaining
a spinal cord injury or traumatic brain injury. Ectopic bone forms
around joints in characteristic patterns, causing pain and limiting
movement especially around the hip and elbow. Clinical sequelae
of neurogenic heterotopic ossification include urinary tract infection,
pressure injuries, pneumonia and poor hygiene, making early diagnosis
and treatment clinically compelling. However, diagnosis remains
difficult with more investigation needed. Our pathophysiological
understanding stems from mechanisms of basic bone formation enhanced
by evidence of systemic influences from circulating humor factors
and perhaps neurological ones. This increasing understanding guides
our implementation of current prophylaxis and treatment including
the use of non-steroidal anti-inflammatory drugs, bisphosphonates,
radiation therapy and surgery and, importantly, should direct future, more
effective ones.
To review the current best surgical practice and detail a multi-disciplinary
approach that could further reduce joint replacement infection. Review of relevant literature indexed in PubMed.Objectives
Methods
In this paper, we consider wound healing after
total knee arthroplasty.
We present a series of 35 patients (19 men and
16 women) with a mean age of 64 years (36.7 to 75.9), who underwent
total hip replacement using the ESKA dual-modular short stem with
metal on-polyethylene bearing surfaces. This implant has a modular
neck section in addition to the modular head. Of these patients,
three presented with increasing post-operative pain due to pseudotumour
formation that resulted from corrosion at the modular neck-stem
junction. These patients underwent further surgery and aseptic lymphocytic
vaculitis associated lesions were demonstrated on histological analysis. Retrieval analysis of two modular necks showed corrosion at the
neck-stem taper. Blood cobalt and chromium levels were measured
at a mean of nine months (3 to 28) following surgery. These were
compared with the levels in seven control patients (three men and
four women) with a mean age of 53.4 years (32.1 to 64.1), who had
an identical prosthesis and articulation but with a prosthesis that
had no modularity at neck-stem junction. The mean blood levels of
cobalt in the study group were raised at 50.75 nmol/l (5 to 145)
compared with 5.6 nmol/l (2 to 13) in control patients. Corrosion at neck-stem tapers has been identified as an important
source of metal ion release and pseudotumour formation requiring
revision surgery. Finite element modelling of the dual modular stem
demonstrated high stresses at the modular stem-neck junction. Dual
modular cobalt-chrome hip prostheses should be used with caution
due to these concerns.
Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.
We present the results of 13 patients who suffered severe injuries to the lower leg. Five sustained a traumatic amputation and eight a Gustilo-Anderson type IIIC open fracture. All were treated with debridement, acute shortening and stabilisation of the fracture and vascular reconstruction. Further treatment involved restoration of tibial length by callus distraction through the distal or proximal metaphysis, which was commenced soon after the soft tissues had healed (n = 8) or delayed until union of the fracture (n = 5). All patients were male with a mean age of 28.4 years (17 to 44), and had sustained injury to the leg only. Chen grade II functional status was achieved in all patients. Although the number of patients treated with each strategy was limited, there was no obvious disadvantage in the early lengthening programme, which was completed more quickly.
This is a retrospective study of six children with ununited scaphoid fractures treated conservatively. Their mean age was 12.8 years (9.7 to 16.3). Five had no early treatment. Radiological signs of nonunion were found at a mean of 4.6 months (3 to 7) after injury. Treatment consisted of cast immobilisation until clinical and radiological union. The mean clinical and radiological follow-up was for 67 months (17 to 90). We assessed the symptoms, the range of movement of the wrist and the grip strength to calculate the Modified Mayo Wrist score. The fracture united in all patients after a mean period of immobilisation of 5.3 months (3 to 7). Five patients were pain free; one had mild pain. All returned to regular activities, and had a range of movement and grip strength within 25% of normal, resulting in an excellent Modified Mayo Wrist score. Prolonged treatment with cast immobilisation resulted in union of the fracture and an excellent Modified Wrist Score in all patients.
We describe the management of nonunion combined with limb-length discrepancy following vascularised fibular grafting for the reconstruction of long-bone defects in the lower limb after resection of a tumour in skeletally immature patients. We operated on nine patients with a mean age of 13.1 years (10.5 to 14.5) who presented with a mean limb-length discrepancy of 7 cm (4 to 9) and nonunion at one end of a vascularised fibular graft, which had been performed previously, to reconstruct a bone defect after resection of an osteosarcoma. Reconstruction was carried out using a ring fixator secured with correction by half pins of any malalignment, compression of the site of nonunion and lengthening through a metaphyseal parafocal osteotomy without bone grafting. The expected limb-length discrepancy at maturity was calculated using the arithmetic method. Solid union and the intended leg length were achieved in all the patients. Excessive scarring and the distorted anatomy from previous surgery in these patients required other procedures to be performed with minimal exposures and dissection in order to avoid further compromise to the vascularity of the graft or damage to neurovascular structures. The methods which we chose were simple and effective in addressing these complex problems.
The survivorship of contemporary resurfacing arthroplasty of the hip using metal-on-metal bearings is better than that of first generation designs, but short-term failures still occur. The most common reasons for failure are fracture of the femoral neck, loosening of the component, osteonecrosis of the femoral head, reaction to metal debris and malpositioning of the component. In 2008 the Australian National Joint Registry reported an inverse relationship between the size of the head component and the risk of revision in resurfacing hip arthroplasty. Hips with a femoral component size of ≤ 44 mm have a fivefold increased risk of revision than those with femoral components of ≥ 55 mm irrespective of gender. We have reviewed the literature to explore this observation and to identify possible reasons including the design of the implant, loading of the femoral neck, the orientation of the component, the production of wear debris and the effects of metal ions, penetration of cement and vascularity of the femoral head. Our conclusion is that although multifactorial, the most important contributors to failure in resurfacing arthroplasty of the hip are likely to be the design and geometry of the component and the orientation of the acetabular component.
The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.
We report the use of an allograft prosthetic composite for reconstruction of the skeletal defect in complex revision total hip replacement for severe proximal femoral bone loss. Between 1986 and 1999, 72 patients (20 men, 52 women) with a mean age of 59.9 years (38 to 78) underwent reconstruction using this technique. At a mean follow-up of 12 years (8 to 20) 57 patients were alive, 14 had died and one was lost to follow-up. Further revision was performed in 19 hips at a mean of 44.5 months (11 to 153) post-operatively. Causes of failure were aseptic loosening in four, allograft resorption in three, allograft nonunion in two, allograft fracture in four, fracture of the stem in one, and deep infection in five. The survivorship of the allograft-prosthesis composite at ten years was 69.0% (95% confidence interval 67.7 to 70.3) with 26 patients remaining at risk. Survivorship was statistically significantly affected by the severity of the pre-operative bone loss (Paprosky type IV; p = 0.019), the number of previous hip revisions exceeding two (p = 0.047), and the length of the allograft used (p = 0.005).
In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.
We report our experience of treating 17 patients with benign lesions of the proximal femur with non-vascularised, autologous fibular strut grafts, without osteosynthesis. The mean age of the patients at presentation was 16.5 years (5 to 33) and they were followed up for a mean of 2.9 years (0.4 to 19.5). Histological diagnoses included simple bone cyst, fibrous dysplasia, aneurysmal bone cysts and giant cell tumour. Local recurrence occurred in two patients (11.7%) and superficial wound infection, chronic hip pain and deep venous thrombosis occurred in three. Pathological fracture did not occur in any patient following the procedure. We conclude that non-vascularised fibular strut grafts are a safe and satisfactory method of treating benign lesions of the proximal femur.
We review the treatment of pelvic Ewing’s sarcoma by the implantation of extracorporeally-irradiated (ECI) autografts and compare the outcome with that of other reported methods. We treated 13 patients with ECI autografts between 1994 and 2004. There were seven males and six females with a median age of 15.7 years (interquartile range (IQR) 12.2 to 21.7). At a median follow-up of five years (IQR 1.8 to 7.4), the disease-free survival was 69% overall, and 75% if one patient with local recurrence after initial treatment elsewhere was excluded. Four patients died from distant metastases at a mean of 17 months (13 to 23). There were three complications which required operative intervention; one was a deep infection which required removal of the graft. The functional results gave a mean Musculoskeletal Tumor Society score of 85% (60% to 97%), a mean Toronto extremity salvage score of 86% (69% to 100%) and a mean Harris hip score of 92 (67 to 100). We conclude that ECI grafting is a suitable form of treatment for localised and resectable pelvic Ewing’s sarcoma.
Thrombin has many biological properties similar to those of growth factors. In a previous study, we showed that thrombin improves healing of the rat tendo Achillis. Low molecular weight heparin (LMWH) inhibits the activity and the generation of thrombin. We therefore considered that LMWH at a thromboprophylactic dose might inhibit tendon repair. Transection of the tendo Achillis was carried out in 86 rats and the healing tested mechanically. Low molecular weight heparin (dalateparin) was either injected a few minutes before the operation and then given continuously with an osmotic mini pump for seven days, or given as one injection before the operation. In another experiment ,we gave LMWH or a placebo by injection twice daily. The anti-factor Xa activity was analysed. Continuous treatment with LMWH impaired tendon healing. After seven days, this treatment caused a 33% reduction in force at failure, a 20% reduction in stiffness and a 67% reduction in energy uptake. However, if injected twice daily, LMWH had no effect on tendon healing. Anti-factor Xa activity was increased by LMWH treatment, but was normal between intermittent injections. Low molecular weight heparin delays tendon repair if given continuously, but not if injected intermittently, probably because the anti-factor Xa activity between injections returns to normal, allowing sufficient thrombin stimulation for repair. These findings indicate the need for caution in the assessment of long-acting thrombin and factor Xa inhibitors.
We describe a series of 20 patients with ununited fractures of the femoral neck following neglected trauma or failed primary internal fixation who were seen at a mean of 7.5 months (2 to 18) following injury. Open reduction and internal fixation of the fracture was performed in all patients, together with a myoperiosteal flap on the quadratus femoris muscle pedicle. Union occurred at a mean of 4.9 months (2 to 10) in all patients. The mean follow-up was for 70 months (14 to 144). There was no further progression in six of seven patients with pre-operative radiological evidence of osteonecrosis of the femoral head. One patient had delayed collapse and flattening of the femoral head ten years after union of the fracture, but remained asymptomatic. This study demonstrates the orthopaedic application of myoperiosteal grafting for inducing osteogenesis in a difficult clinical situation.
A combination of hemivertebrae and diastematomyelia is rare. We have identified 12 such patients seen during a period of 11 years in the orthopaedic, spinal and neurosurgical units in Nottingham and analysed their treatment and outcome.