The hip joint is commonly involved in multiple epiphyseal dysplasia and patients may require total hip replacement before the age of 30 years. We retrospectively reviewed nine patients (16 hips) from four families. The diagnosis of multiple epiphyseal dysplasia was based on a family history, genetic counselling, clinical features and radiological findings. The mean age at surgery was 32 years (17 to 63), with a mean follow-up of 15.9 years (5.5 to 24). Of the 16 hips, ten required revision at a mean of 12.5 years (5 to 15) consisting of complete revision of the acetabular component in three hips and isolated exchange of the liner in seven. No femoral component has loosened or required revision during the period of follow-up. With revision for any reason, the 15-year survival was only 11.4% (95% confidence interval 1.4 to 21.4). However, when considering revision of the acetabular shell in isolation the survival at ten years was 93.7% (95% confidence interval 87.7 to 99.7), reducing to 76.7% (95% confidence interval 87.7 to 98.7) at 15 and 20 years, respectively.
Between 1999 and 2005, 10 264 patients who had undergone total hip replacement (THR) for subcapital fracture of the hip were compared with 76 520 in whom THR had been performed for other reasons. All the cases were identified through the Swedish Hip Arthroplasty Register. The THRs performed as primary treatment for fracture were also compared with those done after failure of internal fixation. After seven years the rate of revision was higher in THR after fracture (4.4% vs 2.9%). Dislocation and periprosthetic fracture were the most common causes of revision. The risk was higher in men than in women. The type of femoral component and the surgical approach influenced the risk. After correction for gender, type of component and the surgical approach the revision rates were similar in the primary and secondary fracture THR groups. Total hip replacement is therefore a safe method for both the primary and secondary management of fracture of the hip.
We describe a cohort of patients with a high rate of mid-term failure following Kinemax Plus total knee replacement inserted between 1998 and 2001. This implant has been recorded as having a survival rate of 96% at ten years. However, in our series the survival rate was 75% at nine years. This was also significantly lower than that of subsequent consecutive series of PFC Sigma knee replacements performed by the same surgeon. No differences were found in the clinical and radiological parameters between the two groups. At revision the most striking finding was polyethylene wear. An independent analysis of the polyethylene components was therefore undertaken. Scanning electron microscopy revealed type 2 fusion defects in the ultra-high molecular weight polyethylene (UHMWPE), which indicated incomplete boundary fusion. Other abnormalities consistent with weak UHMWPE particle interface strength were present in both the explanted inserts and in unused inserts from the same period. We consider that these type 2 fusion defects are the cause of the early failure of the Kinemax implants. This may represent a manufacturing defect resulting in a form of programmed polyethylene failure.
Between 1989 and 1992 we had 102 knees suitable for unicompartmental knee replacement (UKR). They were randomised to receive either a St Georg Sled UKR or a Kinematic modular total knee replacement (TKR). The early results demonstrated that the UKR group had less complications and more rapid rehabilitation than the TKR group. At five years there were an equal number of failures in the two groups but the UKR group had more excellent results and a greater range of movement. The cases were reviewed by a research nurse at 8, 10 and 12 years after operation. We report the outcome at 15 years follow-up. A total of 43 patients (45 knees) died with their prosthetic knees intact. Throughout the review period the Bristol knee scores of the UKR group have been better and at 15 years 15 (71.4%) of the surviving UKRs and 10 (52.6%) of the surviving TKRs had achieved an excellent score. The 15 years survivorship rate based on revision or failure for any reason was 24 (89.8%) for UKR and 19 (78.7%) for TKR. During the 15 years of the review four UKRs and six TKRs failed. The better early results with UKR are maintained at 15 years with no greater failure rate. The median Bristol knee score of the UKR group was 91.1 at five years and 92 at 15 years, suggesting little functional deterioration in either the prosthesis or the remainder of the joint. These results justify the increased use of UKR.