Advertisement for orthosearch.org.uk
Results 41 - 60 of 174
Results per page:
Bone & Joint Research
Vol. 11, Issue 2 | Pages 121 - 133
22 Feb 2022
Hsu W Lin S Hung J Chen M Lin C Hsu W Hsu WR

Aims

The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model.

Methods

We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 388 - 400
8 Jul 2021
Dall’Ava L Hothi H Henckel J Di Laura A Tirabosco R Eskelinen A Skinner J Hart A

Aims

The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants.

Methods

We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1405 - 1411
3 Oct 2020
Martynov I Klink T Slowik V Stich R Zimmermann P Engel C Lacher M Boehm R

Aims

This exploratory randomized controlled trial (RCT) aimed to determine the splint-related outcomes when using the novel biodegradable wood-composite splint (Woodcast) compared to standard synthetic fibreglass (Dynacast) for the immobilization of undisplaced upper limb fractures in children.

Methods

An exploratory RCT was performed at a tertiary paediatric referral hospital between 1 June 2018 and 30 September 2019. The intention-to-treat population consisted of 170 patients (mean age 8.42 years (SD 3.42); Woodcast (WCG), n = 84, 57 male (67.9%); Dynacast (DNG), n = 86, 58 male (67.4%)). Patients with undisplaced upper limb fractures were randomly assigned to WCG or DNG treatment groups. Primary outcome was the stress stability of the splint material, defined as absence of any deformations or fractures within the splint during study period. Secondary outcomes included patient satisfaction and medical staff opinion. Additionally, biomechanical and chemical analysis of the splint samples was carried out.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 619 - 628
27 Sep 2021
Maestro-Paramio L García-Rey E Bensiamar F Saldaña L

Aims

To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities.

Methods

We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 33 - 37
1 Jul 2021
Ennin KA Elsharkawy KA Dasgupta S Emerson RH

Aims

To achieve the functional benefits of the direct anterior (DA) approach and the fixation benefits of cemented replacement, this study combined the two techniques posing the following questions: does the limited access of the DA approach adversely affect the cement technique?; and does such a cementing technique reduce the incidence of cementless complications?

Methods

A consecutive series of 341 patients (360 hips) receiving the DA approach between 2016 and 2018 were reviewed. There were 203 cementless stems and 157 cemented stems. Mean age was 75 years (70 to 86) in the cementless group and 76 years (52 to 94) in the cemented group, with 239 (70%) females in the whole series. Femoral complications were compared between the two groups. Mean follow-up was 1.5 years (0.1 to 4.4) for patients in the cementless group and 1.3 years (0.0 to 3.9) for patients in the cemented group.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 46 - 52
1 Jul 2021
McGoldrick NP Fischman D Nicol GM Kreviazuk C Grammatopoulos G Beaulé PE

Aims

The aim of this study was to radiologically evaluate the quality of cement mantle and alignment achieved with a polished tapered cemented femoral stem inserted through the anterior approach and compared with the posterior approach.

Methods

A comparative retrospective study of 115 consecutive hybrid total hip arthroplasties or cemented hemiarthroplasties in 110 patients, performed through anterior (n = 58) or posterior approach (n = 57) using a collarless polished taper-slip femoral stem, was conducted. Cement mantle quality and thickness were assessed in both planes. Radiological outcomes were compared between groups.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 298 - 306
1 May 2021
Dolkart O Kazum E Rosenthal Y Sher O Morag G Yakobson E Chechik O Maman E

Aims

Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model.

Methods

A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls. Biomechanical, histological, and bone properties were assessed at three and six weeks.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims

The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated.

Methods

Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 908 - 915
1 May 2021
O’Donnell JA Wu M Cochrane NH Belay E Myntti MF James GA Ryan SP Seyler TM

Aims

Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm.

Methods

We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 916 - 922
1 May 2021
Qiao J Xu C Chai W Hao L Zhou Y Fu J Chen J

Aims

It can be extremely challenging to determine whether to perform reimplantation in patients who have contradictory serum inflammatory markers and frozen section results. We investigated whether patients with a positive frozen section at reimplantation were at a higher risk of reinfection despite normal ESR and CRP.

Methods

We retrospectively reviewed 163 consecutive patients with periprosthetic joint infections (PJIs) who had normal ESR and CRP results pre-reimplantation in our hospital from 2014 to 2018. Of these patients, 26 had positive frozen sections at reimplantation. The minimum follow-up time was two years unless reinfection occurred within this period. Univariable and multivariable logistic regression analyses were performed to identify the association between positive frozen sections and treatment failure.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 6 | Pages 853 - 857
1 Nov 1992
Pihlajamaki H Bostman O Hirvensalo E Tormala P Rokkanen P

We reviewed 27 patients with small-fragment fractures or osteotomies treated by internal fixation with absorbable self-reinforced poly-L-lactide pins. The follow-up time ranged from eight to 37 months. The two most common indications were chevron osteotomy of the first metatarsal bone for hallux valgus and displaced fracture of the radial head. No redisplacements occurred, and there were no signs of inflammatory foreign-body reaction. Biopsy in two patients 20 and 37 months after implantation showed that no polymeric material remained


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 5 | Pages 742 - 744
1 Nov 1984
Dick T Lamb D Douglas W

This paper describes a prosthesis for patients who have had a partial amputation of the hand, or who have congenital absence of all or part of the hand. The prosthesis incorporates a new concept whereby the grip is operated by flexion and extension of the wrist. A covering for the prosthesis has been developed using a silicone polymer which produces a lifelike flexible glove. Thirteen patients have so far been fitted with this type of prosthesis, which can give good function and cosmesis


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 175 - 179
1 Mar 1984
Wahlig H Dingeldein E Buchholz H Buchholz M Bachmann F

A randomised, double-blind study was performed in two groups of 15 patients undergoing total hip replacements, using antibiotic-loaded acrylic cement containing 0.5 g and 1.0 g gentamicin base respectively per 40 g pack of powdered polymer. Postoperatively, the gentamicin levels in the blood, in the urine and in the wound drainage fluid were measured. In both groups of patients, the serum gentamicin concentrations were low whereas the wound drainage fluid contained highly effective antibacterial concentrations. Serum, urine and wound secretion levels showed approximately two-fold higher concentrations in the group of patients receiving the higher gentamicin load


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 3 | Pages 514 - 518
1 Aug 1971
Sweet MBE Solomon L

1. The hyaluronate of synovial fluid is an acidic linear polymer which can effectively resist the diffusion of other macromolecules into its domain. Gelatin was used as an experimental model for hyaluronate, to investigate its effect upon the diffusion of protein-polysaccharides from cartilage slices. 2. The concentration of protein-polysaccilaride in the extracting medium was quantitated by uronic acid estimation and liquid scintillation spectrometry of . 35. sulphate-labelled proteinpolysaccharide. 3. Concentrations of gelatin in excess of 20 per cent (W/v) significantly retarded diffusion of protein-polysaccharides out of cartilage slices, but evidently not the movement of these molecules within cartilage. 4. It is suggested that disaggregation of both the protein-polysaecharide molecules of cartilage and the hyaluronate of synovial fluid contribute to cartilage breakdown


Bone & Joint 360
Vol. 10, Issue 1 | Pages 19 - 24
1 Feb 2021


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 333 - 338
1 Mar 1998
Böstman OM

Between 1985 and 1994, 1223 patients with malleolar fractures of the ankle were treated by open reduction and internal fixation with absorbable pins and screws, of whom 74 (6.1%) had an obvious inflammatory foreign-body reaction to the implants. Of these 74, ten later developed moderate to severe osteoarthritis of the ankle despite no evidence of incongruity of the articular surface. The implants used in these patients were made from polyglycolide, polylactide or glycolidelactide copolymer. The joint damage seemed to be due to polymeric debris entering the articular cavity through an osteolytic extension of an implant track. The ten patients had a long clinical course which included a vigorous local foreign-body reaction, synovial irritation and subsequent degeneration. At a follow-up of three to nine years, ankle arthrodesis had been necessary in two patients and is being considered for another two. The incidence of these changes in the whole series was 0.8%, which is not high, but awareness of this possible late complication is essential


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims

This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty.

Materials and Methods

Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 77 - 84
1 Jan 2021
Milstrey A Rosslenbroich S Everding J Raschke MJ Richards RG Moriarty TF Puetzler J

Aims

Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on Staphylococcus aureus biofilms in vitro in the presence and absence of antibiotic agents.

Methods

S. aureus biofilms were grown on titanium discs (13 mm × 4 mm) in a bioreactor for 48 hours. Shockwaves were applied with either 250, 500, or 1,000 impulses onto the discs surrounded by either phosphate-buffered saline or antibiotic (rifampin alone or in combination with nafcillin). The number of viable bacteria was determined by quantitative culture after sonication. Representative samples were taken for scanning electron microscopy.