Advertisement for orthosearch.org.uk
Results 41 - 60 of 687
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 261 - 267
1 Feb 2020
Tøndevold N Lastikka M Andersen T Gehrchen M Helenius I

Aims. It is uncertain whether instrumented spinal fixation in nonambulatory children with neuromuscular scoliosis should finish at L5 or be extended to the pelvis. Pelvic fixation has been shown to be associated with up to 30% complication rates, but is regarded by some as the standard for correction of deformity in these conditions. The incidence of failure when comparing the most caudal level of instrumentation, either L5 or the pelvis, using all-pedicle screw instrumentation has not previously been reported. In this retrospective study, we compared nonambulatory patients undergoing surgery at two centres: one that routinely instrumented to L5 and the other to the pelvis. Methods. In all, 91 nonambulatory patients with neuromuscular scoliosis were included. All underwent surgery using bilateral, segmental, pedicle screw instrumentation. A total of 40 patients underwent fusion to L5 and 51 had their fixation extended to the pelvis. The two groups were assessed for differences in terms of clinical and radiological findings, as well as complications. Results. The main curve (MC) was a mean of 90° (40° to 141°) preoperatively and 46° (15° to 82°) at two-year follow-up in the L5 group, and 82° (33° to 116°) and 19° (1° to 60°) in the pelvic group (p < 0.001 at follow-up). Correction of MC and pelvic obliquity (POB) were statistically greater in the pelvic group (p < 0.001). There was no statistically significant difference in the operating time, blood loss, or complications. Loss of MC correction (> 10°) was more common in patients fixated to the pelvis (23% vs 3%; p = 0.032), while loss of pelvic obliquity correction was more frequent in the L5 group (25% vs 0%; p = 0.007). Risk factors for loss of correction (either POB or MC) included preoperative coronal imbalance (> 50 mm, odds ratio (OR) 11.5, 95%confidence interval (CI) 2.0 to 65; p = 0.006) and postoperative sagittal imbalance (> 25 mm, OR 11.0, 95% CI1.9 to 65; p = 0.008). Conclusion. We found that patients undergoing pelvic fixation had a greater correction of MC and POB. The rate of complications was not different. Preoperative coronal and postoperative sagittal imbalance were associated with increased risks of loss of correction, regardless of extent of fixation. Therefore, we recommend pelvic fixation in all nonambulatory children with neuromuscular scoliosis where coronal or sagittal imbalance are present preoperatively. Cite this article: Bone Joint J 2020;102-B(2):261–267


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


Bone & Joint Open
Vol. 3, Issue 1 | Pages 85 - 92
27 Jan 2022
Loughenbury PR Tsirikos AI

The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction


Bone & Joint Open
Vol. 3, Issue 6 | Pages 495 - 501
14 Jun 2022
Keohane D Sheridan GA Masterson E

Aims. Total knee arthroplasty (TKA) is a common and safe orthopaedic procedure. Zimmer Biomet's NexGen is the second most popular brand of implant used in the UK. The primary cause of revision after the first year is aseptic loosening. We present our experience of using this implant, with significant concerns around its performance with regards early aseptic loosening of the tibial component. Methods. A retrospective, single-surgeon review was carried out of all of the NexGen Legacy Posterior Stabilized (LPS) TKAs performed in this institute. The specific model used for the index procedures was the NexGen Complete Knee System (Legacy Knee-Posterior Stabilized LPS-Flex Articular Surface, LPS-Flex Femoral Component Option, and Stemmed Nonaugmentable Tibial Component Option). Results. Between 2013 and 2016, 352 NexGen TKAs were carried out on 331 patients. A total of 62 TKAs have been revised to date, giving an all-cause revision rate of 17.6% at a minimum of five years. Three of these revisions were due to infection. Overall, 59 of the revisions were performed for aseptic loosening (16.7%) of the tibial component. The tibial component was removed intraoperatively without instrumentation due to significant tibial debonding between the implant-cement interface. Conclusion. While overall, we believe that early aseptic loosening is multi-factorial in nature, the significantly high aseptic revision rate, as seen by an experienced fellowship-trained arthroplasty surgeon, has led us to believe that there is a fundamental issue with this NexGen implant design. Continued implant surveillance and rigorous review across all regions using this particular implant is warranted based on the concerning findings described here. Cite this article: Bone Jt Open 2022;3(6):495–501


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 376 - 382
1 Mar 2020
Pesenti S Lafage R Henry B Kim HJ Bolzinger M Elysée J Cunningham M Choufani E Lafage V Blanco J Jouve J Widmann R

Aims. To compare the rates of sagittal and coronal correction for all-pedicle screw instrumentation and hybrid instrumentation using sublaminar bands in the treatment of thoracic adolescent idiopathic scoliosis (AIS). Methods. We retrospectively reviewed the medical records of 124 patients who had undergone surgery in two centres for the correction of Lenke 1 or 2 AIS. Radiological evaluation was carried out preoperatively, in the early postoperative phase, and at two-year follow-up. Parameters measured included coronal Cobb angles and thoracic kyphosis. Postoperative alignment was compared after matching the cohorts by preoperative coronal Cobb angle, thoracic kyphosis, lumbar lordosis, and pelvic incidence. Results. A total of 179 patients were available for analysis. After matching, 124 patients remained (62 in each cohort). Restoration of thoracic kyphosis was significantly better in the sublaminar band group than in the pedicle screw group (from 23.7° to 27.5° to 34.0° versus 23.9° to 18.7° to 21.5°; all p < 0.001). When the preoperative thoracic kyphosis was less than 20°, sublaminar bands achieved a normal postoperative thoracic kyphosis, whereas pedicle screws did not. In the coronal plane, pedicle screws resulted in a significantly better correction than sublaminar bands at final follow-up (73.0% versus 59.7%; p < 0.001). Conclusion. This is the first study to compare sublaminar bands and pedicle screws for the correction of a thoracic AIS. We have shown that pedicle screws give a good coronal correction which is maintained at two-year follow-up. Conversely, sublaminar bands restore the thoracic kyphosis better while pedicle screws are associated with a flattening of the thoracic spine. In patients with preoperative hypokyphosis, sublaminar bands should be used to restore a proper sagittal profile. Cite this article: Bone Joint J 2020;102-B(3):376–382


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads. Results. Experimental pull-out strengths were excellently correlated to the µFE pull-out stiffness of the ROI (R. 2. > 0.87) and FV (R. 2. > 0.84) models. No significant difference due to screw design was observed. Cement augmentation increased pull-out stiffness by up to 94% and 48% for L and R screws, respectively, but only increased bending stiffness by up to 6.9% and 1.5%, respectively. Cementing involving only one screw tip resulted in lower stiffness increases in all tested screw designs and loading cases. The stiffening effect of cement augmentation on pull-out and bending stiffness was strongly and negatively correlated to local bone density around the screw (correlation coefficient (R) = -0.95). Conclusion. This combined experimental, µCT and µFE study showed that regional analyses may be sufficient to predict fixation strength in pull-out and that full analyses could show that cement augmentation around pedicle screws increased fixation stiffness in both pull-out and bending, especially for low-density bone. Cite this article: Bone Joint Res 2021;10(12):797–806


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims. This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Materials and Methods. Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced. Results. Before and after steam sterilization, dimensional analysis showed that acrylonitrile butadiene styrene could not withstand the temperatures without dimensional changes. Oscillating saw tests with slotted cutting blocks produced debris, fractures, or further dimensional changes in the shape of Nylon-12 and polymethylmethacrylate (MED610), but polyetherimide ULTEM 1010 was least affected. Conclusion. The study showed that 3D-printed instrumentation was technically feasible and had some advantages. However, other factors, such as whether all procedural steps can be accomplished with a set of 3D-printed instruments, the logistics of delivery, and the economic aspects, require further study. Cite this article: Bone Joint J 2019;101-B(7 Supple C):115–120


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1563 - 1569
1 Dec 2019
Helenius IJ Saarinen AJ White KK McClung A Yazici M Garg S Thompson GH Johnston CE Pahys JM Vitale MG Akbarnia BA Sponseller PD

Aims. The aim of this study was to compare the surgical and quality-of-life outcomes of children with skeletal dysplasia to those in children with idiopathic early-onset scoliosis (EOS) undergoing growth-friendly management. Patients and Methods. A retrospective review of two prospective multicentre EOS databases identified 33 children with skeletal dysplasia and EOS (major curve ≥ 30°) who were treated with growth-friendly instrumentation at younger than ten years of age, had a minimum two years of postoperative follow-up, and had undergone three or more lengthening procedures. From the same registries, 33 matched controls with idiopathic EOS were identified. A total of 20 children in both groups were treated with growing rods and 13 children were treated with vertical expandable prosthetic titanium rib (VEPTR) instrumentation. Results. Mean preoperative major curves were 76° (34° to 115°) in the skeletal dysplasia group and 75° (51° to 113°) in the idiopathic group (p = 0.55), which were corrected at final follow-up to 49° (13° to 113°) and 46° (12° to 112°; p = 0.68), respectively. T1-S1 height increased by a mean of 36 mm (0 to 105) in the skeletal dysplasia group and 38 mm (7 to 104) in the idiopathic group at the index surgery (p = 0.40), and by 21 mm (1 to 68) and 46 mm (7 to 157), respectively, during the distraction period (p = 0.0085). The skeletal dysplasia group had significantly worse scores in the physical function, daily living, financial impact, and parent satisfaction preoperatively, as well as on financial impact and child satisfaction at final follow-up, than the idiopathic group (all p < 0.05). The domains of the 24-Item Early-Onset Scoliosis Questionnaire (EOSQ24) remained at the same level from preoperative to final follow-up in the skeletal dysplasia group (all p > 0.10). Conclusion. Children with skeletal dysplasia gained significantly less spinal growth during growth-friendly management of their EOS and their health-related quality of life was significantly lower both preoperatively and at final follow-up than in children with idiopathic EOS. Cite this article: Bone Joint J 2019;101-B:1563–1569


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 78 - 80
1 Jan 2016
Lee G

Patient specific instrumentation (PSI) uses advanced imaging of the knee (CT or MRI) to generate individualised cutting blocks aimed to make the procedure of total knee arthroplasty (TKA) more accurate and efficient. However, in this era of healthcare cost consciousness, the value of new technologies needs to be critically evaluated. There have been several comparative studies looking at PSI versus standard instrumentation. Most compare PSI with conventional instrumentation in terms of alignment in the coronal plane, operative time and surgical efficiency, cost effectiveness and short-term outcomes. Several systematic reviews and meta-analyses have also been published. PSI has not been shown to be superior compared with conventional instrumentation in its ability to restore traditional mechanical alignment in primary TKA. Most studies show comparative efficacy and no decrease in the number of outliers in either group. In terms of operative time and efficiency, PSI tended towards decreasing operative time, saving a mean of five minutes per patient (0 to 20). Furthermore, while some cost savings could be realised with less operative time and reduced instrumentation per patient, these savings were overcome by the cost of the CT/MRI and the cutting blocks. Finally, there was no evidence that PSI positively affected clinical outcomes at two days, two months, or two years. Consequently, current evidence does not support routine use of PSI in routine primary TKA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):78–80


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1392 - 1399
2 Aug 2021
Kang TW Park SY Oh H Lee SH Park JH Suh SW

Aims. Open discectomy (OD) is the standard operation for lumbar disc herniation (LDH). Percutaneous endoscopic lumbar discectomy (PELD), however, has shown similar outcomes to OD and there is increasing interest in this procedure. However despite improved surgical techniques and instrumentation, reoperation and infection rates continue and are reported to be between 6% and 24% and 0.7% and 16%, respectively. The objective of this study was to compare the rate of reoperation and infection within six months of patients being treated for LDH either by OD or PELD. Methods. In this retrospective, nationwide cohort study, the Korean National Health Insurance database from 1 January 2007 to 31 December 2018 was reviewed. Data were extracted for patients who underwent OD or PELD for LDH without a history of having undergone either procedure during the preceding year. Individual patients were followed for six months through their encrypted unique resident registration number. The primary endpoints were rates of reoperation and infection during the follow-up period. Other risk factors for reoperation and infection were also evalulated. Results. Out of 549,531 patients, 522,640 had undergone OD (95.11%) and 26,891 patients had undergone PELD (4.89%). Reoperation rates within six months were 2.28% in the OD group, and 5.38% in the PELD group. Infection rates were 1.18% in OD group and 0.83% in PELD group. The risk of reoperation was lower for patients with OD than for patients with PELD (adjusted hazard ratio (HR) 0.38). The risk of infection was higher for patients with OD than for patients undergoing PELD (HR, 1.325). Conclusion. Compared with the OD group, the PELD group showed higher reoperation rates and lower infection rates. Cite this article: Bone Joint J 2021;103-B(8):1392–1399


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 53 - 58
1 Jul 2021
Lawrie CM Bechtold D Schwabe M Clohisy JC

Aims. The direct anterior approach (DAA) for total hip arthroplasty (THA) has potential advantages over other approaches and is most commonly performed with the patient in the supine position. We describe a technique for DAA THA with the patient in the lateral decubitus position and report the early clinical and radiological outcomes, the characteristics of the learning curve, and perioperative complications. Methods. All primary DAA THAs performed in the lateral position by a single surgeon over a four-year period from the surgeon’s first case using the technique were identified from a prospectively collected database. Modified Harris Hip Scores (mHHS) were collected to assess clinical outcome, and routine radiological analysis was performed. Retrospective review of the medical records identified perioperative complications, the characteristics of the learning curve, and revisions. Results. A total of 257 patients were included in the study. Their mean age was 60 years (SD 9.0). A total of 164 (64%) were female. The mean mHHS improved significantly from 52.1 (SD 16.2) preoperatively to 94.4 (SD 11) at a follow-up of one year (p < 0.001), with 212 of 225 patients (94%) achieving a minimal clinically important difference (MCID) (> 8 points). Radiological evaluation showed a mean leg length discrepancy of 2.6 mm (SD 5.9) and a mean difference in femoral offset of 0.2 mm (SD 4.9). A total of 234/243 acetabular components (96.3%) were positioned within Lewinnek’s safe zone. Analysis of operating time, blood loss, the position of the components, and complications did not identify a learning curve. A total of 14 patients (5.4%) had a major perioperative complication and three (1.2%) required revision THA. There were no major neurovascular complications and no dislocations. Conclusion. We have described and analyzed a surgical technique for undertaking DAA THA in the familiar lateral decubitus position using a routine operating table, positioning devices, and instrumentation, and shown that it can be performed safely and effectively under these circumstances. Cite this article: Bone Joint J 2021;103-B(7 Supple B):53–58


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


Bone & Joint Open
Vol. 2, Issue 2 | Pages 119 - 124
1 Feb 2021
Shah RF Gwilym SE Lamb S Williams M Ring D Jayakumar P

Aims. The increase in prescription opioid misuse and dependence is now a public health crisis in the UK. It is recognized as a whole-person problem that involves both the medical and the psychosocial needs of patients. Analyzing aspects of pathophysiology, emotional health, and social wellbeing associated with persistent opioid use after injury may inform safe and effective alleviation of pain while minimizing risk of misuse or dependence. Our objectives were to investigate patient factors associated with opioid use two to four weeks and six to nine months after an upper limb fracture. Methods. A total of 734 patients recovering from an isolated upper limb fracture were recruited in this study. Opioid prescription was documented retrospectively for the period preceding the injury, and prospectively at the two- to four-week post-injury visit and six- to nine-month post-injury visit. Bivariate and multivariate analysis sought factors associated with opioid prescription from demographics, injury-specific data, Patient Reported Outcome Measurement Instrumentation System (PROMIS), Depression computer adaptive test (CAT), PROMIS Anxiety CAT, PROMIS Instrumental Support CAT, the Pain Catastrophizing Scale (PCS), the Pain Self-efficacy Questionnaire (PSEQ-2), Tampa Scale for Kinesiophobia (TSK-11), and measures that investigate levels of social support. Results. A new prescription of opioids two to four weeks after injury was independently associated with less social support (odds ratio (OR) 0.26, p < 0.001), less instrumental support (OR 0.91, p < 0.001), and greater symptoms of anxiety (OR 1.1, p < 0.001). A new prescription of opioids six to nine months after injury was independently associated with less instrumental support (OR 0.9, p < 0.001) and greater symptoms of anxiety (OR 1.1, p < 0.001). Conclusion. This study demonstrates that potentially modifiable psychosocial factors are associated with increased acute and chronic opioid prescriptions following upper limb fracture. Surgeons prescribing opioids for upper limb fractures should be made aware of the screening and management of emotional and social health. Cite this article: Bone Jt Open 2021;2(2):119–124


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 834 - 839
1 Jun 2016
Wang S Ma H Lin C Chou P Liu C Yu W Chang M

Aim. Many aspects of the surgical treatment of patients with tuberculosis (TB) of the spine, including the use of instrumentation and the types of graft, remain controversial. Our aim was to report the outcome of a single-stage posterior procedure, with or without posterior decompression, in this group of patients. Patients and Methods. Between 2001 and 2010, 51 patients with a mean age of 62.5 years (39 to 86) underwent long posterior instrumentation and short posterior or posterolateral fusion for TB of the thoracic and lumbar spines, followed by anti-TB chemotherapy for 12 months. No anterior debridement of the necrotic tissue was undertaken. Posterior decompression with laminectomy was carried out for the 30 patients with a neurological deficit. Results. The mean kyphotic angle improved from 26.1° (- 1.8° to 62°) to 15.2° (-25° to 51°) immediately after the operation. At a mean follow-up of 68.8 months (30 to 144) the mean kyphotic angle was 16.9° (-22° to 54°), with a mean loss of correction of 1.6° (0° to 10°). There was a mean improvement in neurological status of 1.2 Frankel grades in those with a neurological deficit. Bony union was achieved in all patients, without recurrent infection. Conclusions. Long posterior instrumentation with short posterior or posterolateral fusion is effective in the treatment of TB spine. It controls infection, corrects the kyphosis, and maintains correction and neurological improvement over time. . Take home message: With effective anti-TB chemotherapy, a posterior only procedure without debridement of anterior lesion is effective in the treatment of TB spondylitis, and an anterior procedure can be reserved for those patients who have not improved after posterior surgery. Cite this article: Bone Joint J 2016;98-B:834–9


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III. Cite this article: Bone Joint J 2021;103-B(3):547–552


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 365 - 370
1 Mar 2020
Min KS Fox HM Bedi A Walch G Warner JJP

Aims. Patient-specific instrumentation has been shown to increase a surgeon’s precision and accuracy in placing the glenoid component in shoulder arthroplasty. There is, however, little available information about the use of patient-specific planning (PSP) tools for this operation. It is not known how these tools alter the decision-making patterns of shoulder surgeons. The aim of this study was to investigate whether PSP, when compared with the use of plain radiographs or select static CT images, influences the understanding of glenoid pathology and surgical planning. Methods. A case-based survey presented surgeons with a patient’s history, physical examination, and, sequentially, radiographs, select static CT images, and PSP with a 3D imaging program. For each imaging modality, the surgeons were asked to identify the Walch classification of the glenoid and to propose the surgical treatment. The participating surgeons were grouped according to the annual volume of shoulder arthroplasties that they undertook, and responses were compared with the recommendations of two experts. Results. A total of 59 surgeons completed the survey. For all surgeons, the use of the PSP significantly increased agreement with the experts in glenoid classification (x. 2. = 8.54; p = 0.014) and surgical planning (x. 2. = 37.91; p < 0.001). The additional information provided by the PSP also showed a significantly higher impact on surgical decision-making for surgeons who undertake fewer than ten shoulder arthroplasties annually (p = 0.017). Conclusions. The information provided by PSP has the greatest impact on the surgical decision-making of low volume surgeons (those who perform fewer than ten shoulder arthroplasties annually), and PSP brings all surgeons in to closer agreement with the recommendations of experts for glenoid classification and surgical planning. Cite this article: Bone Joint J 2020;102-B(3):365–370


Bone & Joint Open
Vol. 2, Issue 10 | Pages 858 - 864
18 Oct 2021
Guntin J Plummer D Della Valle C DeBenedetti A Nam D

Aims. Prior studies have identified that malseating of a modular dual mobility liner can occur, with previous reported incidences between 5.8% and 16.4%. The aim of this study was to determine the incidence of malseating in dual mobility implants at our institution, assess for risk factors for liner malseating, and investigate whether liner malseating has any impact on clinical outcomes after surgery. Methods. We retrospectively reviewed the radiographs of 239 primary and revision total hip arthroplasties with a modular dual mobility liner. Two independent reviewers assessed radiographs for each patient twice for evidence of malseating, with a third observer acting as a tiebreaker. Univariate analysis was conducted to determine risk factors for malseating with Youden’s index used to identify cut-off points. Cohen’s kappa test was used to measure interobserver and intraobserver reliability. Results. In all, 12 liners (5.0%), including eight Stryker (6.8%) and four Zimmer Biomet (3.3%), had radiological evidence of malseating. Interobserver reliability was found to be 0.453 (95% confidence interval (CI) 0.26 to 0.64), suggesting weak inter-rater agreement, with strong agreement being greater than 0.8. We found component size of 50 mm or less to be associated with liner malseating on univariate analysis (p = 0.031). Patients with malseated liners appeared to have no associated clinical consequences, and none required revision surgery at a mean of 14 months (1.4 to 99.2) postoperatively. Conclusion. The incidence of liner malseating was 5.0%, which is similar to other reports. Component size of 50 mm or smaller was identified as a risk factor for malseating. Surgeons should be aware that malseating can occur and implant design changes or changes in instrumentation should be considered to lower the risk of malseating. Although further follow-up is needed, it remains to be seen if malseating is associated with any clinical consequences. Cite this article: Bone Jt Open 2021;2(10):858–864


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 354 - 359
1 Mar 2013
Chareancholvanich K Narkbunnam R Pornrattanamaneewong C

Patient-specific cutting guides (PSCGs) are designed to improve the accuracy of alignment of total knee replacement (TKR). We compared the accuracy of limb alignment and component positioning after TKR performed using PSCGs or conventional instrumentation. A total of 80 patients were randomised to undergo TKR with either of the different forms of instrumentation, and radiological outcomes and peri-operative factors such as operating time were assessed. No significant difference was observed between the groups in terms of tibiofemoral angle or femoral component alignment. Although the tibial component in the PSCGs group was measurably closer to neutral alignment than in the conventional group, the size of the difference was very small (89.8° (. sd. 1.2) vs 90.5° (. sd. 1.6); p = 0.030). This new technology slightly shortened the bone-cutting time by a mean of 3.6 minutes (p < 0.001) and the operating time by a mean 5.1 minutes (p = 0.019), without tangible differences in post-operative blood loss (p = 0.528) or need for blood transfusion (p = 0.789). This study demonstrated that both PSCGs and conventional instrumentation restore limb alignment and place the components with the similar accuracy. The minimal advantages of PSCGs in terms of consistency of alignment or operative time are unlikely to be clinically relevant. Cite this article: Bone Joint J 2013;95-B:354–9