Advertisement for orthosearch.org.uk
Results 41 - 60 of 1427
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 860 - 864
1 Jul 2006
McCullough CJ Remedios D Tytherleigh-Strong G Hua J Walker PS

Between June 1991 and January 1995, 42 hydroxyapatite-coated CAD-CAM femoral components were inserted in 25 patients with inflammatory polyarthropathy, 21 of whom had juvenile idiopathic arthritis. Their mean age was 21 years (11 to 35). All the patients were reviewed clinically and radiologically at one, three and five years. At the final review at a mean of 11.2 years (8 to 13) 37 hips in 23 patients were available for assessment. A total of four femoral components (9.5%) had failed, of which two were radiologically loose and two were revised. The four failed components were in patients aged 16 years or less at the time of surgery. Hydroxyapatite-coated customised femoral components give excellent medium- to long-term results in skeletally-mature young adults with inflammatory polyarthropathy. Patients aged less than 16 years at the time of surgery have a risk of 28.5% of failure of the femoral component at approximately ten years


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 557 - 560
1 Apr 2007
Davis ET Gallie P Macgroarty K Waddell JP Schemitsch E

A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°. The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig. Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during hip resurfacing


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 879 - 886
1 Jul 2007
Howie DW Wimhurst JA McGee MA Carbone TA Badaruddin BS

We investigated 219 revisions of total hip replacement (THR) in 211 patients using a collarless double-taper cemented femoral component. The mean age of the patients was 72 years (30 to 90). The 137 long and 82 standard length stems were analysed separately. The mean follow-up was six years (2 to 18), and no patient was lost to follow-up. Survival of the long stems to re-revision for aseptic loosening at nine years was 98% (95% confidence interval (CI) 94 to 100), and for the standard stems was 93% (95% CI 85 to 100). At five years, one long stem was definitely loose radiologically and one standard stem was probably loose. Pre-operative femoral bone deficiency did not influence the results for the long stems, and corrective femoral osteotomy was avoided, as were significant subsidence, major stress shielding and persistent thigh pain. Because of these reliable results, cemented long collarless double-taper femoral components are recommended for routine revision THR in older patients


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1457 - 1461
1 Nov 2007
Han HS Kang S Yoon KS

We have examined the results obtained with 72 NexGen legacy posterior stabilised-flex fixed total knee replacements in 47 patients implanted by a single surgeon between March 2003 and September 2004. Aseptic loosening of the femoral component was found in 27 (38%) of the replacements at a mean follow-up of 32 months (30 to 48) and 15 knees (21%) required revision at a mean of 23 months (11 to 45). We compared the radiologically-loose and revised knees with those which had remained well-fixed to identify the factors which had contributed to this high rate of aseptic loosening. Post-operatively, the mean maximum flexion was 136° (110° to 140°) in the loosened group and 125° (95° to 140°) in the well-fixed group (independent t-test, p = 0.022). Squatting, kneeling, or sitting cross-legged could be achieved by 23 (85%) of the loosened knees, but only 22 (49%) of the well-fixed knees (chi-squared test, p = 0.001). The loosened femoral components were found to migrate into a more flexed position, but no migration was detected in the well-fixed group. These implants allowed a high degree of flexion, but showed a marked rate of early loosening of the femoral component, which was associated with weight-bearing in maximum flexion


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 894 - 903
1 Jul 2017
Bonnin MP Saffarini M Nover L van der Maas J Haeberle C Hannink G Victor J

Aims. The morphometry of the distal femur was largely studied to improve bone-implant fit in total knee arthroplasty (TKA), but little is known about the asymmetry of the posterior condyles. This study aimed to investigate the dimensions of the posterior condyles and the influence of externally rotating the femoral component on potential prosthetic overhang or under-coverage. Patients and Methods. We analysed the shape of 110 arthritic knees at the time of primary TKA using pre-operative CT scans. The height and width of each condyle were measured at the posterior femoral cut in neutral position, and in 3º and 5º of external rotation, using both central and medial referencing systems. We compared the morphological characteristics with those of 14 TKA models. Results. In the neutral position, the dimensions of the condyles were nearly equal. Externally rotating the femoral cut by 3º and 5º with ‘central referencing’ induced width asymmetry >  3 mm in 23 (21%) and 33 (30%) knees respectively, while with ‘medial referencing’ it induced width asymmetry > 3 mm in 43 (39%) and 75 (68%) knees respectively. The asymmetries induced by rotations were not associated with gender, aetiology or varus-valgus alignment. Conclusion. External rotation may amplify the asymmetry between the medial and lateral condyles, and exacerbate prosthetic overhang, particularly in the superolateral zone. ‘Central referencing’ guides result in less potential prosthetic overhang than ‘medial referencing’ guides. Cite this article: Bone Joint J 2017;99-B:894–903


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 3 | Pages 393 - 398
1 Apr 2003
Siddique MS Rao MC Deehan DJ Pinder IM

We carried out 60 revision procedures for failed porous coated anatomic total knee replacements in 54 patients, which were divided into two groups. The 14 knees in group I had a well-fixed femoral component at surgery which was retained, and in the 46 knees in group II both tibial and femoral components were loose and were revised using a variety of implants. Our review comprised clinical and radiological assessment. A total of 13 knees required a second revision. Six (42%) in group I failed very early (mean 2.1 years) when compared with seven (15%) in group II (mean 6.8 years). Failure was due to wear of the polyethylene insert by the abraded, retained femoral component (crude odds ratio 4.07; 95% CI 1.07 to 15.5). We recommend a complete change of primary bearing surfaces at the time of revision of an uncemented total knee replacement in order to prevent early wear of polyethylene


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1271 - 1276
1 Sep 2012
Luyckx T Peeters T Vandenneucker H Victor J Bellemans J

Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an ‘adapted’ measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan. Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° . (sd. 2.5) in the gap-balancing group and 1.7° (. sd. 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our ‘adapted’ measured resection technique was much lower than reported in the literature


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 771 - 779
1 Jun 2015
te Stroet MAJ Rijnen WHC Gardeniers JWM van Kampen A Schreurs BW

We report the clinical and radiographic outcomes of 208 consecutive femoral revision arthroplasties performed in 202 patients (119 women, 83 men) between March 1991 and December 2007 using the X-change Femoral Revision System, fresh-frozen morcellised allograft and a cemented polished Exeter stem. All patients were followed prospectively. The mean age of the patients at revision was 65 years (30 to 86). At final review in December 2013 a total of 130 patients with 135 reconstructions (64.9%) were alive and had a non re-revised femoral component after a mean follow-up of 10.6 years (4.7 to 20.9). One patient was lost to follow-up at six years, and their data were included up to this point. Re-operation for any reason was performed in 33 hips (15.9%), in 13 of which the femoral component was re-revised (6.3%). The mean pre-operative Harris hip score was 52 (19 to 95) (n = 73) and improved to 80 (22 to 100) (n = 161) by the last follow-up. Kaplan–Meier survival with femoral re-revision for any reason as the endpoint was 94.9% (95% confidence intervals (CI) 90.2 to 97.4) at ten years; with femoral re-revision for aseptic loosening as the endpoint it was 99.4% (95% CI 95.7 to 99.9); with femoral re-operation for any reason as the endpoint it was 84.5% (95% CI 78.3 to 89.1); and with subsidence ≥ 5 mm it was 87.3% (95% CI 80.5 to 91.8). Femoral revision with the use of impaction allograft bone grafting and a cemented polished stem results in a satisfying survival rate at a mean of ten years’ follow-up. Cite this article: Bone Joint J 2015; 97-B:771–9


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1299 - 1302
1 Oct 2006
Tillman R Kalra S Grimer R Carter S Abudu A

Peri- and sub-prosthetic fractures, or pathological fractures below an existing well-fixed femoral component, with or without an ipsilateral knee replacement, present a difficult surgical challenge. We describe a simple solution, in which a custom-made prosthesis with a cylindrical design is cemented proximally to the stem of an existing, well-fixed femoral component. This effectively treats the fracture without sacrificing the good hip. We describe five patients with a mean age of 73 years (60 to 81) and a mean follow-up of 47 months (6 to 108). The mean overlap of the prosthesis over the femoral component was 7.5 cm (5.5 to 10). There have been no mechanical failures, no new infections and no re-operations. We suggest that in highly selected cases, in which conventional fixation is not feasible, this technique offers a durable option and avoids the morbidity of a total femoral replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 405 - 408
1 Mar 2009
Monk AP Keys GW Murray DW

We describe a technique for the diagnosis of loosening of the femoral component of the Oxford Unicompartmental Knee Replacement using accurately aligned lateral radiographs in extension and flexion. If gaps are present between the component and cement on one radiograph and not on the other, the component is loose


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 796 - 799
1 Jun 2005
Lakdawala A Todo S Scott G

We investigated the changes in surface roughness of retrieved femoral components in 18 men and four women at revision knee surgery. The mean age at revision was 68.4 years and the mean period of implantation was for 55.6 months. Eighteen implants were retrieved for aseptic loosening and four for infection. The surface changes in the articulating areas were inspected visually and the roughness (Ra) analysed with a profilometer. Parallel scratching and burnishing were the two main forms of damage. The mean Ra measurements in the articulating areas showed no statistically significant difference when compared with those in a control area on either side of the patellar groove at the apex of the femoral flange. This suggests that it is not essential to revise a well-fixed and correctly aligned femoral component where the polished surface has become burnished or bears fine parallel scratches, if the revision is conducted solely for failure of the tibial component


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 378 - 385
1 Apr 2019
García-Rey E Carbonell-Escobar R Cordero-Ampuero J García-Cimbrelo E

Aims. We previously reported the long-term results of the cementless Duraloc-Profile total hip arthroplasty (THA) system in a 12- to 15-year follow-up study. In this paper, we provide an update on the clinical and radiological results of a previously reported cohort of patients at 23 to 26 years´ follow-up. Patients and Methods. Of the 99 original patients (111 hips), 73 patients (82 hips) with a mean age of 56.8 years (21 to 70) were available for clinical and radiological study at a minimum follow-up of 23 years. There were 40 female patients (44 hips) and 33 male patients (38 hips). Results. All acetabular and femoral components were well fixed and showed signs of bone ingrowth. Nine acetabular components were revised due to wear-osteolysis-related problems and four due to late dislocation. The probability of not having component revision at 25 years was 83.2% (95% confidence interval (CI) 74.5 to 91.8; number at risk 41). Acetabular osteolysis was observed in ten hips. The mean femoral head penetration was 1.52 mm (. sd. 0.8) at 15 years and 1.92 mm (. sd. 1.2) at 25 years. Receiver operating characteristic (ROC) analysis revealed that mean femoral penetration with a value of 0.11 mm/year or more was associated with the appearance of osteolysis. The 25-year Kaplan–Meier survival with different endpoints was 89.9% for acetabular osteolysis (95% CI 83.3 to 96.5), 92.1% for proximal femoral osteolysis (95% CI 86.1 to 98.2), and 75.5% for femoral osteopenia (95% CI 66.5 to 84.5). Conclusion. The Duraloc-Profile THA system showed excellent long-term bone fixation. Nevertheless, monitoring is recommended in order to detect wear and late dislocations in this population that was relatively young at the time of surgery. Cite this article: Bone Joint J 2019;101-B:378–385


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 467 - 471
1 Apr 2006
Leichtle UG Leichtle CI Schmidt B Martini F

Peri-prosthetic bone loss caused by stress shielding may be associated with aseptic loosening of femoral components. In order to increase primary stability and to reduce stress shielding, a three-dimensional, cementless individual femoral (Evolution K) component was manufactured using pre-operative CT scans. Using dual energy x-ray absorptiometry, peri-prosthetic bone density was measured in 43 patients, three months, six months, 3.6 and 4.6 years after surgery. At final follow-up there was a significant reduction in mean bone density in the proximal Gruen zones of −30.3% (zone 7) and −22.8% (zone 1). The density in the other zones declined by a mean of between −4% and −16%. We conclude that the manufacture of a three-dimensional, custom-made femoral component could not prevent a reduction in peri-prosthetic bone density


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1355 - 1361
1 Oct 2011
Bollars P Luyckx J Innocenti B Labey L Victor J Bellemans J

High-flexion total knee replacement (TKR) designs have been introduced to improve flexion after TKR. Although the early results of such designs were promising, recent literature has raised concerns about the incidence of early loosening of the femoral component. We compared the minimum force required to cause femoral component loosening for six high-flexion and six conventional TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed in a loading frame in 135° of flexion. Loosening of the femoral component was induced by moving the tibial component at a constant rate of displacement while maintaining the same angle of flexion. A stereophotogrammetric system registered the relative movement between the femoral component and the underlying bone until loosening occurred. Compared with high-flexion designs, conventional TKR designs required a significantly higher force before loosening occurred (p < 0.001). High-flexion designs with closed box geometry required significantly higher loosening forces than high-flexion designs with open box geometry (p = 0.0478). The presence of pegs further contributed to the fixation strength of components. We conclude that high-flexion designs have a greater risk for femoral component loosening than conventional TKR designs. We believe this is attributable to the absence of femoral load sharing between the prosthetic component and the condylar bone during flexion


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1424 - 1430
1 Nov 2009
Corten K Vanrykel F Bellemans J Frederix PR Simon J Broos PLO

The use of plate-and-cable constructs to treat periprosthetic fractures around a well-fixed femoral component in total hip replacements has been reported to have high rates of failure. Our aim was to evaluate the results of a surgical treatment algorithm to use these lateral constructs reliably in Vancouver type-B1 and type-C fractures. The joint was dislocated and the stability of the femoral component was meticulously evaluated in 45 type-B1 fractures. This led to the identification of nine (20%) unstable components. The fracture was considered to be suitable for single plate-and-cable fixation by a direct reduction technique if the integrity of the medial cortex could be restored. Union was achieved in 29 of 30 fractures (97%) at a mean of 6.4 months (3 to 30) in 29 type-B1 and five type-C fractures. Three patients developed an infection and one construct failed. Using this algorithm plate-and-cable constructs can be used safely, but indirect reduction with minimal soft-tissue damage could lead to shorter times to union and lower rates of complications


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1252 - 1256
1 Sep 2006
Mayr E Krismer M Ertl M Kessler O Thaler M Nogler M

A complete cement mantle is important for the longevity of a total hip replacement. In the minimally-invasive direct anterior approach used at the Innsbruck University hospital, the femoral component has to be inserted into the femoral canal by an angulated movement. In a cadaver study, the quality and the extent of the cement mantle surrounding 13 Exeter femoral components implanted straight through a standard anterolateral transgluteal approach were compared with those of 13 similar femoral components implanted in an angulated fashion through a direct anterior approach. A third-generation cementing technique was used. The inner and outer contours of the cement mantles was traced from CT scans and the thickness and cross-sectional area determined. In no case was the cement mantle incomplete. The total mean thickness of the cement mantle was 3.62 mm (95% confidence interval 3.59 to 3.65). The mean thickness in the group using the minimally-invasive approach was 0.16 mm less than that in the anterolateral group. The distribution of the thickness was similar in the two groups. The mean thickness was less on the anteromedial and anterolateral aspect than on the posterior aspect of the femur. There is no evidence that the angulated introduction of Exeter femoral components in the direct anterior approach in cadavers compromises the quality, extent or thickness of the cement mantle


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1417 - 1421
1 Nov 2008
de Kam DCJ Klarenbeek RLWA Gardeniers JWM Veth RPH Schreurs BW

We evaluated the outcome of 104 consecutive primary cemented Exeter femoral components in 78 patients (34 men, 44 women) under the age of 40 years who underwent total hip replacement between October 1993 and May 2004. The mean age at operation was 31 years (16 to 39). No hip was lost to follow-up, but three patients (four hips) died. None of the deaths were related to the surgery. At a mean follow-up of 6.2 years (2 to 13), three femoral components had been revised for septic loosening. Using Kaplan-Meier survival analysis, the seven-year survival of the component with revision for any reason as the endpoint was 95.8% (95% confidence interval 86.67 to 98.7). The seven-year survival with aseptic femoral loosening as the endpoint was 100% (95% confidence interval 100). The cemented Exeter femoral component in patients under the age of 40 shows promising medium-term results. As it is available in a wide range of sizes and offsets, we could address all types of anatomical variation in this series without the need for custom-made components


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 310 - 315
1 Mar 2009
Olsen M Davis ET Waddell JP Schemitsch EH

We have investigated the accuracy of placement of the femoral component using imageless navigation in 100 consecutive Birmingham Hip Resurfacings. Pre-operative templating determined the native neck-shaft angle and planned stem-shaft angle of the implant. The latter were verified post-operatively using digital anteroposterior unilateral radiographs of the hip. The mean neck-shaft angle determined before operation was 132.7° (118° to 160°). The mean planned stem-shaft angle was a relative valgus alignment of 9.7° (. sd. 2.6). The stem-shaft angle after operation differed from that planned by a mean of 2.8° (. sd. 2.0) and in 86% of cases the final angle measured within ± 5° of that planned. We had no instances of notching of the neck or varus alignment of the implant in our series. A learning curve was observed in the time taken for navigation, but not for accurate placement of the implant. Navigation in hip resurfacing may afford the surgeon a reliable and accurate method of placement of the femoral component


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1231 - 1237
1 Sep 2010
Santori FS Santori N

Bone preservation and physiological distribution of forces on the proximal femur are key elements in introducing a successful uncemented total hip replacement. In order to achieve this, in the mid 1990s, we developed an ultra short proximal loading custom-made component with a lateral flare, a high femoral neck osteotomy and without a diaphyseal stem. We report the outcome of 129 custom-made hydroxyapatite-coated uncemented short femoral components inserted into 109 patients between June 1995 and May 2004. The mean age of the patients was 51 years (21 to 71) and the mean follow-up was eight years (4.9 to 14.1). Bone behaviour around the implant was studied on the post-operative radiographs. The mean Harris hip score improved from 44 (8 to 66) pre-operatively to 95 (76 to 100) at final follow-up. The Western Ontario MacMaster University Osteoarthritis index was 93 of 100 at final review. None of the patients reported thigh pain. A total of five hips were revised, three for polyethylene liner exchange and two for complete revision of the acetabular component. No femoral components were revised. The radiological changes in the proximal femur were generally good, as evidenced by spot welds both on the medial and lateral aspects of the femur. No component migrated. The presence of a lateral flare and use of a high osteotomy of the femoral neck provided good clinical and radiological results. The absence of a diaphyseal portion of the stem did not impair stability