Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Fresh suspensions of Aims
Methods
The management of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA) is challenging. The correct antibiotic management remains elusive due to differences in epidemiology and resistance between countries, and reports in the literature. Before the efficacy of surgical treatment is investigated, it is crucial to analyze the bacterial strains causing PJI, especially for patients in whom no organisms are grown. A review of all revision TKAs which were undertaken between 2006 and 2018 in a tertiary referral centre was performed, including all those meeting the consensus criteria for PJI, in which organisms were identified. Using a cluster analysis, three chronological time periods were created. We then evaluated the antibiotic resistance of the identified bacteria between these three clusters and the effectiveness of our antibiotic regime.Aims
Methods
Objectives. The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known. Methods. In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours. Results. A significant decrease in the survival rate of co-cultured chondrocytes was found. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay demonstrated that mechanical stress-induced apoptosis occurred significantly in co-cultured chondrocytes but administration of the TGF-β1 receptor inhibitor, SB-505124, can significantly reverse these effects. Abdominal administration of SB-505124 can attenuate markedly articular cartilage degradation in OA rats. Conclusion. Mechanical stress-induced overexpression of TGF-β1 from osteoclasts is responsible for chondrocyte apoptosis and cartilage degeneration in OA. Administration of a TGF-β1 inhibitor can inhibit articular cartilage degradation. Cite this article: R-K. Zhang, G-W. Li, C. Zeng, C-X. Lin, L-S. Huang, G-X. Huang, C. Zhao, S-Y. Feng, H. Fang. Mechanical stress contributes to osteoarthritis
Objectives. The purpose of this study was to investigate whether the femoral
head–neck contour, characterised by the alpha angle, varies with
the stage of physeal maturation using MRI evaluation of an asymptomatic
paediatric population. . Methods. Paediatric volunteers with asymptomatic hips were recruited to
undergo MRI of both hips. Femoral head physes were graded from 1
(completely open) to 6 (completely fused). The femoral head–neck
contour was evaluated using the alpha angle, measured at the 3:00
(anterior) and 1:30 (anterosuperior) positions and correlated with
physeal grade, with gender sub-analysis performed. Results. A total of 43 asymptomatic paediatric volunteers (26 male, 17
female) with mean age 13.0 years (eight to 18) were included with
review of bilateral hip MRIs. Correlation between the physeal grade
and alpha angle was moderate in males at both the 3:00 (r = 0.477,
p <
0.001) and 1:30 (r = 0.509, p <
0.001) positions, whereas
there was no significant correlation in females. A significant difference
was found between the alpha angles of all the physeal grades (3:00,
p = 0.030, 1:30, p = 0.005), but only in males, with the angle increasing
with higher grades. For physeal grading, the inter-reader reliability
was substantial (intraclass correlation coefficient (ICC) = 0.694),
and the intra-reader reliability was also substantial (ICC = 0.788). . Conclusion . The femoral head–neck contour varies and correlates with the
stage of physeal
To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism.Aims
Methods
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement in
utero is reduced or restricted and who subsequently suffer
from joint dysplasia (including joint contractures) and thin hypo-mineralised
bones, demonstrate that embryonic movement is crucial for appropriate
skeletogenesis. This has been confirmed in mouse, chick, and zebrafish
animal models, where reduced or eliminated movement consistently yields
similar malformations and which provide the possibility of experimentation
to uncover the precise disturbances and the mechanisms by which
movement impacts molecular regulation. Molecular genetic studies have
shown the important roles played by cell communication signalling
pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone
morphogenetic protein. These pathways regulate cell behaviours such
as proliferation and differentiation to control maturation of the
skeletal elements, and are affected when movement is altered. Cell
contacts to the extra-cellular matrix as well as the cytoskeleton
offer a means of mechanotransduction which could integrate mechanical
cues with genetic regulation. Indeed, expression of cytoskeletal
genes has been shown to be affected by immobilisation. In addition
to furthering our understanding of a fundamental aspect of cell control
and differentiation during
We investigated the
We retrospectively examined the long-term outcome of 96 asymptomatic hips in 96 patients with a mean age of 49.3 years (16 to 65) who had radiological evidence of femoroacetabular impingement. When surveillance commenced there were 17, 34, and 45 hips with cam, pincer, and mixed impingement, respectively. Overall, 79 hips (82.3%) remained free of osteoarthritis for a mean of 18.5 years (10 to 40). In contrast, 17 hips (17.7%) developed osteoarthritis at a mean of 12 years (2 to 28). No statistically significant difference was found in the rates of
To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.Aims
Methods
Pelvic obliquity is a common finding in adolescents
with cerebral palsy, however, there is little agreement on its measurement
or relationship with hip
The primary aim of this paper was to outline the processes involved in building the Partners Arthroplasty Registry (PAR), established in April 2016 to capture baseline and outcome data for patients undergoing arthroplasty in a regional healthcare system. A secondary aim was to determine the quality of PAR’s data. A tertiary aim was to report preliminary findings from the registry and contributions to quality improvement initiatives and research up to March 2019. Structured Query Language was used to obtain data relating to patients who underwent total hip or knee arthroplasty (THA and TKA) from the hospital network’s electronic medical record (EMR) system to be included in the PAR. Data were stored in a secure database and visualized in dashboards. Quality assurance of PAR data was performed by review of the medical records. Capture rate was determined by comparing two months of PAR data with operating room schedules. Linear and binary logistic regression models were constructed to determine if length of stay (LOS), discharge to a care home, and readmission rates improved between 2016 and 2019.Aims
Methods
A retrospective analysis was performed of eight patients with an open triradiate cartilage, who underwent resection for osteosarcoma and reconstruction of the proximal femur with a hemiarthroplasty, in order to identify changes of acetabular
We reviewed the serial radiographs of 54 hips in 47 children treated by closed reduction for congenital dislocation of the hip and followed to at least 14 years of age, to determine the causes of acetabular dysplasia. We excluded hips with femoral head deformity or residual subluxation and compared the results with those from a control series of unaffected hips of patients with unilateral CDH. Acetabular
1. A genetic and orthopaedic analysis of a family of seventy members exhibiting the nail-patella syndrome is described. 2. The disorder is found to be determined by a simple dominant autosomal gene with complete penetrance, but displaying variable expressivity and great pleomorphism. 3. In the family reported all ten of the affected individuals whose blood was typed belonged to group O, demonstrating the adjacent chromosomal position of the nail-patella gene and the ABO blood group locus. 4. The pathogenesis is one of hypoplasia of the nail beds, but hyperplasia in mesodermal tissue as shown by the formation of iliac horns. 5. The skeletal changes are ascribed to a functional disturbance in the
In recent conflicts, most injuries to the limbs are due to blasts resulting in a large number of lower limb amputations. These lead to heterotopic ossification (HO), phantom limb pain (PLP), and functional deficit. The mechanism of blast loading produces a combined fracture and amputation. Therefore, to study these conditions, in vivo models that replicate this combined effect are required. The aim of this study is to develop a preclinical model of blast-induced lower limb amputation. Cadaveric Sprague-Dawley rats’ left hindlimbs were exposed to blast waves of 7 to 13 bar burst pressures and 7.76 ms to 12.68 ms positive duration using a shock tube. Radiographs and dissection were used to identify the injuries.Aims
Methods
This paper describes the
The purpose of this study was to investigate
the
We have reviewed the serial radiographs of 63 hips in 53 children treated by closed reduction for congenital dislocation with a view to finding a radiological measurement which can predict subsequent acetabular
We analysed the cases of lumbar kyphosis in 151 (21%) of a series of 719 patients with myelomeningocele. Three different types were distinguished: paralytic, sharp-angled and congenital. In a cross-sectional and partly longitudinal study the size and magnitude of the kyphosis, the apex of the curve and the level of paralysis of each group were recorded and statistically analysed. Paralytic kyphosis (less than 90° at birth) occurred in 44.4% and increased linearly during further