Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
We evaluated the efficacy of Cite this article:
The April 2014 Spine Roundup360 looks at: medical treatment for ankylosing spondylitis; unilateral TLIF effective; peg fractures akin to neck of femur fractures; sleep apnoea and spinal surgery; scoliosis in osteogenesis imperfect; paediatric atlanto-occipital dislocation; back pain and obesity: chicken or egg?; BMP associated with lumbar plexus deficit; and just how common is back pain?
We examined whether enamel matrix derivative
(EMD) could improve healing of the tendon–bone interface following
reconstruction of the anterior cruciate ligament (ACL) using a hamstring
tendon in a rat model. ACL reconstruction was performed in both
knees of 30 Sprague-Dawley rats using the flexor digitorum tendon.
The effect of commercially available EMD (EMDOGAIN), a preparation
of matrix proteins from developing porcine teeth, was evaluated.
In the left knee joint the space around the tendon–bone interface
was filled with 40 µl of EMD mixed with propylene glycol alginate
(PGA). In the right knee joint PGA alone was used. The ligament
reconstructions were evaluated histologically and biomechanically
at four, eight and 12 weeks (n = 5 at each time point). At eight weeks,
EMD had induced a significant increase in collagen fibres connecting
to bone at the tendon–bone interface (p = 0.047), whereas the control
group had few fibres and the tendon–bone interface was composed
of cellular and vascular fibrous tissues. At both eight and 12 weeks,
the mean load to failure in the treated specimens was higher than
in the controls (p = 0.009). EMD improved histological tendon–bone
healing at eight weeks and biomechanical healing at both eight and
12 weeks. EMD might therefore have a human application to enhance
tendon–bone repair in ACL reconstruction.
The April 2013 Spine Roundup360 looks at: smuggling spinal implants; local bone graft and PLIF; predicting disability with slipped discs; mortality and spinal surgery; spondyloarthropathy; brachytherapy; and fibrin mesh and BMP.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
Currently, there is no animal model in which
to evaluate the underlying physiological processes leading to the heterotopic
ossification (HO) which forms in most combat-related and blast wounds.
We sought to reproduce the ossification that forms under these circumstances
in a rat by emulating patterns of injury seen in patients with severe
injuries resulting from blasts. We investigated whether exposure
to blast overpressure increased the prevalence of HO after transfemoral
amputation performed within the zone of injury. We exposed rats
to a blast overpressure alone (BOP-CTL), crush injury and femoral
fracture followed by amputation through the zone of injury (AMP-CTL)
or a combination of these (BOP-AMP). The presence of HO was evaluated
using radiographs, micro-CT and histology. HO developed in none
of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats.
Exposure to blast overpressure increased the prevalence of HO. This model may thus be used to elucidate cellular and molecular
pathways of HO, the effect of varying intensities of blast overpressure,
and to evaluate new means of prophylaxis and treatment of heterotopic
ossification. Cite this article:
Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.
Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair. Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient ( When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.
The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for the treatment of congenital pseudarthrosis of the tibia has been investigated in only one previous study, with promising results. The aim of this study was to determine whether rhBMP-2 might improve the outcome of this disorder. We reviewed the medical records of five patients with a mean age of 7.4 years (2.3 to 21) with congenital pseudarthrosis of the tibia who had been treated with rhBMP-2 and intramedullary rodding. Ilizarov external fixation was also used in four of these patients. Radiological union of the pseudarthrosis was evident in all of them at a mean of 3.5 months (3.2 to 4) post-operatively. The Ilizarov device was removed after a mean of 4.2 months (3.0 to 5.3). These results indicate that treatment of congenital pseudarthrosis of the tibia using rhBMP-2 in combination with intramedullary stabilisation and Ilizarov external fixation may improve the initial rate of union and reduce the time to union. Further studies with more patients and longer follow-up are necessary to determine whether this surgial procedure may significantly enhance the outcome of congenital pseudarthrosis of the tibia, considering the refracture rate (two of five patients) in this small case series.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
Electromagnetic fields (EMF) are widely used in musculoskeletal
disorders. There are indications that EMF might also be effective
in the treatment of osteoporosis. To justify clinical follow-up
experiments, we examined the effects of EMF on bone micro-architectural
changes in osteoporotic and healthy rats. Moreover, we tested the
effects of EMF on fracture healing. EMF (20 Gauss) was examined in rats (aged 20 weeks), which underwent
an ovariectomy (OVX; n = 8) or sham-ovariectomy (sham-OVX; n = 8).
As a putative positive control, all rats received bilateral fibular
osteotomies to examine the effects on fracture healing. Treatment
was applied to one proximal lower leg (three hours a day, five days
a week); the lower leg was not treated and served as a control.
Bone architectural changes of the proximal tibia and bone formation
around the osteotomy were evaluated using Objectives
Methods
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
The February 2014 Hip &
Pelvis Roundup360 looks at: length of stay; cementless metaphyseal fixation; mortality trends in over 400,000 total hip replacements; antibiotics in hip fracture surgery; blood supply to the femoral head after dislocation; resurfacing and THR in metal-on-metal replacement; diabetes and hip replacement; bone remodelling over two decades following hip replacement; and whether bisphosphonates affect acetabular fixation.
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article:
We studied bone-tendon healing using immunohistochemical methods in a rabbit model. Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification.
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.