The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis. In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years’ follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded.Aims
Methods
Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking.Aims
Methods
The aim of this study was to conduct the largest low contact stress (LCS) retrieval study to elucidate the failure mechanisms of the Porocoat and Duofix femoral component. The latter design was voluntarily recalled by the manufacturer. Uncemented LCS explants were divided into three groups: Duofix, Porocoat, and mixed. Demographics, polyethylene wear, tissue ingrowth, and metallurgical analyses were performed.Aims
Materials and Methods
The MAGnetic Expansion Control (MAGEC) system
is used increasingly in the management of early-onset scoliosis.
Good results have been published, but there have been recent reports
identifying implant failures that may be associated with significant
metallosis surrounding the implants. This article aims to present
the current knowledge regarding the performance of this implant,
and the potential implications and strategies that may be employed
to identify and limit any problems. We urge surgeons to apply caution to patient and construct selection;
engage in prospective patient registration using a spine registry;
ensure close clinical monitoring until growth has ceased; and send
all explanted MAGEC rods for independent analysis. The MAGEC system may be a good instrumentation system for the
treatment of early-onset scoliosis. However, it is innovative and
like all new technology, especially when deployed in a paediatric
population, robust systems to assess long-term outcome are required
to ensure that patient safety is maintained. Cite this article:
Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.Objectives
Methods
Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84).Aims
Patients and Methods
A failed total ankle arthroplasty (TAA) is often associated with
much bone loss. As an alternative to arthrodesis, the surgeon may
consider a custom-made talar component to compensate for the bone
loss. Our aim in this study was to assess the functional and radiological
outcome after the use of such a component at mid- to long-term follow-up. A total of 12 patients (five women and seven men, mean age 53
years; 36 to77) with a failed TAA and a large talar defect underwent
a revision procedure using a custom-made talar component. The design
of the custom-made components was based on CT scans and standard
radiographs, when compared with the contralateral ankle. After the
anterior talocalcaneal joint was fused, the talar component was
introduced and fixed to the body of the calcaneum.Aims
Patients and Methods
The aims of this retrospective study were to report the feasibility
of using 3D-printing technology for patients with a pelvic tumour
who underwent reconstruction. A total of 35 patients underwent resection of a pelvic tumour
and reconstruction using 3D-printed endoprostheses between September
2013 and December 2015. According to Enneking’s classification of
bone defects, there were three Type I lesions, 12 Type II+III lesions,
five Type I+II lesions, two Type I+II+III lesions, ten type I+II+IV
lesions and three type I+II+III+IV lesions. A total of three patients
underwent reconstruction using an iliac prosthesis, 12 using a standard
hemipelvic prosthesis and 20 using a screw-rod connected hemipelvic
prosthesis.Aims
Patients and Methods
The aim of this study was to compare the cost-effectiveness of
treatment with an osseointegrated percutaneous (OI-) prosthesis
and a socket-suspended (S-) prosthesis for patients with a transfemoral
amputation. A Markov model was developed to estimate the medical costs and
changes in quality-adjusted life-years (QALYs) attributable to treatment
of unilateral transfemoral amputation over a projected period of
20 years from a healthcare perspective. Data were collected alongside
a prospective clinical study of 51 patients followed for two years.Aims
Patients and Methods
After intercalary resection of a bone tumour from the femur,
reconstruction with a vascularized fibular graft (VFG) and massive
allograft is considered a reliable method of treatment. However,
little is known about the long-term outcome of this procedure. The
aims of this study were to determine whether the morbidity of this
procedure was comparable to that of other reconstructive techniques,
if it was possible to achieve a satisfactory functional result, and
whether biological reconstruction with a VFG and massive allograft
could achieve a durable, long-lasting reconstruction. A total of 23 patients with a mean age of 16 years (five to 40)
who had undergone resection of an intercalary bone tumour of the
femur and reconstruction with a VFG and allograft were reviewed
clinically and radiologically. The mean follow-up was 141 months
(24 to 313). The mean length of the fibular graft was 18 cm (12 to
29). Full weight-bearing without a brace was allowed after a mean
of 13 months (seven to 26).Aims
Patients and Methods
Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests.Objectives
Methods
Radial head arthroplasty (RHA) may be used in the treatment of
non-reconstructable radial head fractures. The aim of this study
was to evaluate the mid-term clinical and radiographic results of
RHA. Between 2002 and 2014, 77 RHAs were implanted in 54 men and 23
women with either acute injuries (54) or with traumatic sequelae
(23) of a fracture of the radial head. Four designs of RHA were
used, including the Guepar (Small Bone Innovations (SBi)/Stryker;
36), Evolutive (Aston Medical; 24), rHead RECON (SBi/Stryker; ten)
or rHead STANDARD (SBi/Stryker; 7) prostheses. The mean follow-up
was 74.0 months (standard deviation (Aims
Patients and Methods
Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.Objectives
Methods
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its stability.
The purpose of this study was to compare the primary stability of
the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver
knees. In each pair, one knee received the single peg and one received
the twin peg design. Three dimensional micromotion and subsidence
of the component in relation to the bone was measured under cyclical
loading at flexion of 40° and 70° using an optical measuring system.
Wilcoxon matched pairs signed-rank test was performed to detect
differences between the two groups. There was no significant difference in the relative micromotion
(p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and
0.176, respectively) of the component between the two groups at
both angles of flexion. Both designs of component offered good strength
of fixation in this cadaver study. Cite this article:
All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05.Objectives
Materials and Methods
Four uncemented Symax hip stems were extracted at three weeks and nine, 13 and 32 months, respectively, for reasons other than loosening. The reasons for implant removal were infection in two cases, recurrent dislocation in one and acetabular fracture in one. They were analysed to assess the effect and behaviour of an electrochemically deposited, completely resorbable biomimetic BONIT-hydroxyapatite (HA) coating (proximal part) and a DOTIZE surface treatment (distal part) using qualitative histology, quantitative histomorphometry and scanning electron microscopy (SEM). Early and direct bone-implant bonding with signs of active remodelling of bone and the HA coating were demonstrated by histology and SEM. No loose BONIT-HA particles or delamination of the coating were observed, and there was no inflammation or fibrous interposition at the interface. Histomorphometry showed bone-implant contact varying between 26.5% at three weeks and 83.5% at 13 months at the HA-coated implant surface. The bone density in the area of investigation was between 24.6% at three weeks and 41.1% at 32 months. The DOTIZE surface treatment of the distal part of the stem completely prevented tissue and bone apposition in all cases, thereby optimising proximal stress transfer. The overall features of this implant, in terms of geometry and surface texture, suggest a mechanically stable design with a highly active biomimetic coating, resulting in rapid and extensive osseo-integration, exclusively in the metaphyseal part of the stem. Early remodelling of the HA coating does not seem to have a detrimental effect on short-term bone-implant coupling. There were no adverse effects identified from either the BONIT-HA coating or the DOTIZE surface treatment.
Dual mobility cups have two points of articulation,
one between the shell and the polyethylene (external bearing) and
one between the polyethylene and the femoral head (internal bearing).
Movement occurs at the inner bearing; the outer bearing only moves
at extremes of movement. Dislocation after total hip arthroplasty (THA) is a cause of
much morbidity and its treatment has significant cost implications.
Dual mobility cups provide an increased range of movement and a
may reduce the risk of dislocation. This paper reviews the use of these cups in THA, particularly
where stability is an issue. Dual mobility cups may be of benefit
in primary THA in patients at a high risk of dislocation, such as
those who are older with increased comorbidities and a higher American
Association of Anesthesiology grade and those with a neuromuscular
disease. They may be used at revision surgery where the risk of
dislocation is high, such as in patients with many prior dislocations,
or those with abductor deficiency. They may also be used in THA
for displaced fractures of the femoral neck, which has a notoriously
high rate of dislocation. Cite this article:
Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired Objectives
Materials and Methods
Because of the contradictory body of evidence related to the
potential benefits of helical blades in trochanteric fracture fixation,
we studied the effect of bone compaction resulting from the insertion
of a proximal femoral nail anti-rotation (PFNA). We developed a subject-specific computational model of a trochanteric
fracture (31-A2 in the AO classification) with lack of medial support
and varied the bone density to account for variability in bone properties
among hip fracture patients.Objectives
Methods