Advertisement for orthosearch.org.uk
Results 501 - 520 of 966
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 5 | Pages 804 - 811
1 Nov 1989
Hernigou P Thiery J Benoit J Voisin M Leroux P Hagege G Delepine G Goutallier D

We investigated the possible use of acrylic cement containing chemotherapeutic drugs in the treatment of malignant lesions in bone. The diffusion of methotrexate (MTX) from methylpolymethacrylate implants was studied in vitro: polymerisation of the cement did not destroy the drug; liberation began immediately and about 10% was released by 18 hours. Some release continued for as long as six months. In vivo experiments on rats with induced osteosarcoma showed that MTX in cement had both local and general effects which were dependent on the dosage. A series of 17 large dogs with spontaneous osteosarcoma were then treated by local resection and cement containing MTX. General chemotherapeutic effects were detectable from 2 hours to 5 days, survival was increased and local recurrence was reduced, but there were four cases of delayed wound healing. Preliminary studies in human patients confirm the possibility that this method of local chemotherapy could be a useful addition to the treatment of malignant tumours of bone


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 118 - 124
1 Jan 1999
Brewster NT Gillespie WJ Howie CR Madabhushi SPG Usmani AS Fairbairn DR

In impaction grafting of contained bone defects after revision joint arthroplasty the graft behaves as a friable aggregate and its resistance to complex forces depends on grading, normal load and compaction. Bone mills in current use produce a distribution of particle sizes more uniform than is desirable for maximising resistance to shear stresses. We have performed experiments in vitro using morsellised allograft bone from the femoral head which have shown that its mechanical properties improve with increasing normal load and with increasing shear strains (strain hardening). The mechanical strength also increases with increasing compaction energy, and with the addition of bioglass particles to make good the deficiency in small and very small fragments. Donor femoral heads may be milled while frozen without affecting the profile of the particle size. Osteoporotic femoral heads provide a similar grading of sizes, although fewer particles are obtained from each specimen. Our findings have implications for current practice and for the future development of materials and techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 2 | Pages 361 - 369
1 May 1974
Lokietek W Pawluk RJ Bassett CAL

1. The electric potentials in undeformed rabbit tibiae were measured in vivo and in vitro. 2. Surgically traumatised soft-tissues, particularly muscle, constituted the major source of voltage in vivo (up to 22 millivolts). 3. Electrical insulation of the tibia from attached soft parts abolished the high potentials on the bone. 4. Similarly high voltages could be reproduced in an excised tibia by substituting a battery for the injured muscle. 5. Changes in voltage also could be induced by altering blood flow rates or by rapid infusion of saline into the medullary space. 6. Death of the cellular elements in bone did not alter the voltage significantly. 7. The electrical contributions of the nervous system, and of dipole components of the extracellular matrix (such as collagen), either were inconsequential or of such low magnitude as to be "masked" by the larger "injury" voltages. Supported by grants from the United States Public Health Service (AM-07822) and the National Institute of Arthritis and Metabolic Diseases (TIAM-05408)


Bone & Joint Research
Vol. 8, Issue 2 | Pages 73 - 80
1 Feb 2019
Zhang J Hao X Yin M Xu T Guo F

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases.

Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1.


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 2 | Pages 178 - 184
1 May 1981
Dekel S Francis M

Osteomyelitis was induced in the tibiae of rabbits by injecting a suspension of Staphylococcus aureus and sodium tetradecylsulphate, a sclerosing agent. These rabbits were then divided into two groups: one group remained untreated and the other was fed a diet containing sodium salicylate. Two and four weeks after induction of osteomyelitis the tibiae taken from untreated rabbits with osteomyelitis and incubated in vitro released significantly more prostaglandin E and F than the control uninjected or uninfected tibiae. Tibiae taken from rabbits treated with sodium salicylate showed minimal radiographic changes and a significantly decreased release of prostaglandin E and F compared to the untreated rabbits. Prostaglandins are known to be potent bone resorbing agents and the results of this study suggest that they may also be involved in the destruction of bone which is characteristic of osteomyelitis. The treatment of rabbits with osteomyelitis using anti-inflammatory drugs, which block synthesis of prostaglandins, in addition to antibiotics, may prevent the destruction of bone and possible sequestration thereby decreasing the risk of chronic disease


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 4 | Pages 452 - 457
1 Nov 1977
Elson R Jephcott A McGechie D Verettas D

In thirty-one rat tibiae, plugs of plain acrylic cement were inoculated with Staphylococcus aureus; these all remained contaminated at the end of two weeks when the animals were killed. Inoculation with known strains of Pseudomonas, Proteus and Gp. G Streptococcus resulted in 70 to 93 per cent persisting contamination. Gentamicin, to which the organisms were fully sensitive, was efficacious in controlling the infection (90 per cent plugs proving sterile after two weeks). Fucidin was less successful against Staphylococcus aureus although effective in vitro. Intravenous inoculation with a suspension of Staphylococcus aureus succeeded in contaminanting 70 per cent of sixty plain cement plugs when injected into the tail vein half an hour after closure of the leg wounds. Only 11 per cent of sixty-four plugs were so contaminanted when the injection was delayed for two weeks. This animal model is submitted as a possible future means of testing different antibiotic-cement combinations against infection


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 53 - 58
1 Jan 2019
Billi F Kavanaugh A Schmalzried H Schmalzried TP

Aims

Loosening of the tibial component after total knee arthroplasty (TKA) is a common indication for revision. Increasing the strength of the initial tibial implant/cement interface is desirable. There is little information about the surgical techniques that lead to the highest strength. We investigated the effects of eight variables on the strength of the initial tibial baseplate/cement interface.

Materials and Methods

A total of 48 tibial trays were cemented into acrylic holders using cement from two manufacturers, at three different times (early, normal, and late) using two techniques: cementing the tibial plateau or the plateau and the keel; and involving two conditions of contamination with marrow fat (at the metal/cement and cement/cement interfaces). Push-out tests were performed with load continuously recorded.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 4 | Pages 600 - 604
1 Jul 1992
Shinto Y Uchida A Korkusuz F Araki N Ono K

Porous blocks of calcium hydroxyapatite ceramic were evaluated as delivery systems for the sustained release of antibiotics. We tested gentamicin sulphate, cefoperazone sodium, and flomoxef sodium in powder form placed in a cylindrical cavity in calcium hydroxyapatite blocks, using in vitro studies of elution and in vivo studies in rats. Gentamicin sulphate gave a maximum concentration within the first week, which gradually decreased but was still effective at 12 weeks, when 70% of the antibiotic had been released. Even at this stage the antibiotic concentration from a 75 mg dose was five times the minimum inhibitory concentration for staphylococci. In the in vivo studies the release of gentamicin sulphate into the normal bone of rats was at similar rates and levels. The bacteriocidal activity of the drugs was not affected by packing into calcium hydroxyapatite ceramic and the blocks were completely biocompatible on histology. This new system overcomes the disadvantages of other drug delivery systems, avoiding thermal damage to the antibiotics and a second operation for the removal of the carrier. Some mechanical strength is provided by the ceramic and healing may be accelerated by bone ingrowth into its micropores


Bone & Joint 360
Vol. 8, Issue 4 | Pages 42 - 44
1 Aug 2019


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 426 - 434
1 Apr 2019
Logishetty K van Arkel RJ Ng KCG Muirhead-Allwood SK Cobb JP Jeffers JRT

Aims

The hip’s capsular ligaments passively restrain extreme range of movement (ROM) by wrapping around the native femoral head/neck. We determined the effect of hip resurfacing arthroplasty (HRA), dual-mobility total hip arthroplasty (DM-THA), conventional THA, and surgical approach on ligament function.

Materials and Methods

Eight paired cadaveric hip joints were skeletonized but retained the hip capsule. Capsular ROM restraint during controlled internal rotation (IR) and external rotation (ER) was measured before and after HRA, DM-THA, and conventional THA, with a posterior (right hips) and anterior capsulotomy (left hips).


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 349 - 356
1 May 1996
Bishop NE Ferguson S Tepic S

The fatigue failure of bone cement, leading to loosening of the stem, is likely to be one mode of failure of cemented total hip replacements. There is strong evidence that cracks in the cement are initiated at voids which act as stress risers, particularly at the cement-stem interface. The preferential formation of voids at this site results from shrinkage during polymerisation and the initiation of this process at the warmer cement-bone interface, which causes bone cement to shrink away from the stem. A reversal of the direction of polymerisation would shrink the cement on to the stem and reduce or eliminate the formation of voids at this interface. We have investigated this by implanting hip prostheses, at room temperature or preheated to 44°C, into human cadaver femora kept at 37°C. Two types of bone cement were either hand-mixed or vacuum-mixed before implantation. We found that the area of porosity at the cement-stem interface was dramatically reduced by preheating the stem and that the preheating temperature of 44°C determined by computer analysis of transient heat transfer was the minimum required to induce initial polymerisation at the cement-stem interface. Temperature measurements taken during these experiments in vitro showed that preheating of the stem caused a negligible increase in the temperature of the bone. Reduction of porosity at the cement-stem interface could significantly increase the life of hip arthroplasties


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1059 - 1064
1 Sep 2000
Rupp S Seil R Kohn D Müller B

Our aim was to analyse the effect of avascularity on the morphology and mechanical properties (tensile strength, viscoelasticity) of human bone-patellar-tendon-bone (BPTB) grafts in vitro. These were harvested at postmortem and stored submerged in denaturated human plasma at a constant pH, pO. 2. , pCO. 2. , temperature and humidity under sterile conditions. Mechanical testing was performed two and four weeks after removal of the graft. The mean ultimate strength was 1085.7 ± 255.8 N (control), 1009.0 ± 314.9 N (two weeks cultured) and 1076.8 ± 414.8 N (four weeks cultured). There was no significant difference in linear stiffness or deformation to failure between the groups. There was a difference in viscoelasticity between the control group and the avascular grafts and the latter had significant lower peak load-to-load ratios after 15 minutes compared with the control group. After two and four weeks the graft contained viable fibroblasts. There was regular cellularity in the superficial layers and decreased cellularity in the midportion. The structure of the collagen including the crimp pattern appeared to be normal in polarised light. We conclude that avascularity does not significantly affect ultimate failure loads or stiffness of BPTB grafts. Slight changes in viscoelasticity were induced, but the significance of the increased stress relaxation is not fully understood


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 601 - 613
1 May 2000
Roach HI Clarke NMP

Chondrocytes at the lower zone of the growth plate must be eliminated to facilitate longitudinal growth; this is generally assumed to involve apoptosis. We attempted to provide definitive electron-microscopic evidence of apoptosis in chondrocytes of physes and chondroepiphyses in the rabbit. We were, however, unable to find a single chondrocyte with the ultrastructure of ‘classical’ apoptosis in vivo, although such a cell was found in vitro. Instead, condensed chondrocytes had a convoluted nucleus with patchy chromatin condensations while the cytoplasm was dark with excessive amounts of endoplasmic reticulum. These cells were termed ‘dark chondrocytes’. A detailed study of their ultrastructure combined with localisation methods in situ suggested a different mechanism of programmed cell death. In addition, another type of death was identified among the immature chondrocytes of the chondroepiphysis. These cells had the same nucleus as dark chondrocytes, but the lumen of the endoplasmic reticulum had expanded to fill the entire non-nuclear space, and all cytoplasm and organelles had been reduced to dark, worm-like inclusions. Since these cells appeared to be ‘in limbo’, they were termed ‘paralysed’ cells. It is proposed that ‘dark chondrocytes’ and ‘paralysed cells’ are examples of physiological cell death which does not involve apoptosis. It is possible that the confinement of chondrocytes within their lacunae, which would prevent phagocytosis of apoptotic bodies, necessitates different mechanisms of elimination


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 891 - 896
1 Aug 2019
Rossi LA Murray IR Chu CR Muschler GF Rodeo SA Piuzzi NS

There is good scientific rationale to support the use of growth factors to promote musculoskeletal tissue regeneration. However, the clinical effectiveness of platelet-rich plasma (PRP) and other blood-derived products has yet to be proven. Characterization and reporting of PRP preparation protocols utilized in clinical trials for the treatment of musculoskeletal disease is highly inconsistent, and the majority of studies do not provide sufficient information to allow the protocols to be reproduced. Furthermore, the reporting of blood-derived products in orthopaedics is limited by the multiple PRP classification systems available, which makes comparison of results between studies challenging. Several attempts have been made to characterize and classify PRP; however, no consensus has been reached, and there is lack of a comprehensive and validated classification. In this annotation, we outline existing systems used to classify preparations of PRP, highlighting their advantages and limitations. There remains a need for standardized universal nomenclature to describe biological therapies, as well as a comprehensive and reproducible classification system for autologous blood-derived products.

Cite this article: Bone Joint J 2019;101-B:891–896.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1330 - 1335
1 Oct 2018
Ponzio DY Weitzler L deMeireles A Esposito CI Wright TM Padgett DE

Aims

The aim of this study was to evaluate the surface damage, the density of crosslinking, and oxidation in retrieved antioxidant-stabilized highly crosslinked polyethylene (A-XLPE) tibial inserts from total knee arthroplasty (TKA), and to compare the results with a matched cohort of standard remelted highly crosslinked polyethylene (XLPE) inserts.

Materials and Methods

A total of 19 A-XLPE tibial inserts were retrieved during revision TKA and matched to 18 retrieved XLPE inserts according to the demographics of the patients, with a mean length of implantation of 15 months (1 to 42). The percentage areas of PE damage on the articular surfaces and the modes of damage were measured. The density of crosslinking of the PE and oxidation were measured at loaded and unloaded regions on these surfaces.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 283 - 288
1 Mar 2001
Wilkinson JM Peel NFA Elson RA Stockley I Eastell R

We aimed to evaluate the precision and longitudinal sensitivity of measurement of bone mineral density (BMD) in the pelvis and to determine the effect of bone cement on the measurement of BMD in femoral regions of interest (ROI) after total hip arthroplasty (THA). A series of 29 patients had duplicate dual-energy x-ray absorptiometry (DXA) scans of the hip within 13 months of THA. Pelvic analyses using 3- and 4-ROI models gave a coefficient of variation (CV) of 2.5% to 3.6% and of 2.5% to 4.8%, respectively. Repeat scans in 17 subjects one year later showed a significant change in BMD in three regions using the 4-ROI model, compared with change in only one region with the 3-ROI model (p < 0.05). Manual exclusion of cement from femoral ROIs increased the net CV from 1.6% to 3.6% (p = 0.001), and decreased the measured BMD by 20% (t = 12.1, p < 0.001). Studies of two cement phantoms in vitro showed a small downward drift in bone cement BMD giving a measurement error of less than 0.03 g/cm. 2. /year associated with inclusion of cement in femoral ROIs. Changes in pelvic periprosthetic BMD are best detected using a 4-ROI model. Analysis of femoral ROI is more precise without exclusion of cement although an awareness of its effect on the measurement of the BMD is needed


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.


Bone & Joint Research
Vol. 8, Issue 6 | Pages 253 - 254
1 Jun 2019
de Steiger R


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 824 - 831
1 Jul 2019
Mahmoud EE Adachi N Mawas AS Deie M Ochi M

Aim

Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model.

Materials and Methods

Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 65 - 72
1 Feb 2019
Cowie RM Aiken SS Cooper JJ Jennings LM

Objectives

Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation.

Methods

A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry.