Advertisement for orthosearch.org.uk
Results 461 - 480 of 2225
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs.

Methods

In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 604 - 612
1 May 2022
MacDessi SJ Wood JA Diwan A Harris IA

Aims

Intraoperative pressure sensors allow surgeons to quantify soft-tissue balance during total knee arthroplasty (TKA). The aim of this study was to determine whether using sensors to achieve soft-tissue balance was more effective than manual balancing in improving outcomes in TKA.

Methods

A multicentre randomized trial compared the outcomes of sensor balancing (SB) with manual balancing (MB) in 250 patients (285 TKAs). The primary outcome measure was the mean difference in the four Knee injury and Osteoarthritis Outcome Score subscales (ΔKOOS4) in the two groups, comparing the preoperative and two-year scores. Secondary outcomes included intraoperative balance data, additional patient-reported outcome measures (PROMs), and functional measures.


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1033 - 1042
1 Aug 2018
Kayani B Konan S Pietrzak JRT Huq SS Tahmassebi J Haddad FS

Aims. The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA. Patients and Methods. This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (. sd. 6.8) vs 64.1 years (. sd. 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (. sd. 2.7) vs 28.1 kg.m2 (. sd. 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications. Results. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time (p < 0.001) and surgical team confidence levels (p < 0.001). Cumulative robotic experience did not affect accuracy of implant positioning (p = 0.52), posterior condylar offset ratio (p = 0.71), posterior tibial slope (p = 0.68), native joint line preservation (p = 0.55), and postoperative limb alignment (p = 0.65). Robotic-arm assisted UKA improved accuracy of femoral (p < 0.001) and tibial (p < 0.001) implant positioning with no additional risk of postoperative complications compared to conventional jig-based UKA. Conclusion. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time and surgical team confidence levels but no learning curve for accuracy of implant positioning. Cite this article: Bone Joint J 2018;100-B:1033–42


Bone & Joint Open
Vol. 3, Issue 3 | Pages 173 - 181
1 Mar 2022
Sobol KR Fram BR Strony JT Brown SA

Aims

Endoprosthetic reconstruction with a distal femoral arthroplasty (DFA) can be used to treat distal femoral bone loss from oncological and non-oncological causes. This study reports the short-term implant survivorship, complications, and risk factors for patients who underwent DFA for non-neoplastic indications.

Methods

We performed a retrospective review of 75 patients from a single institution who underwent DFA for non-neoplastic indications, including aseptic loosening or mechanical failure of a previous prosthesis (n = 25), periprosthetic joint infection (PJI) (n = 23), and native or periprosthetic distal femur fracture or nonunion (n = 27). Patients with less than 24 months’ follow-up were excluded. We collected patient demographic data, complications, and reoperations. Reoperation for implant failure was used to calculate implant survivorship.


Bone & Joint 360
Vol. 11, Issue 2 | Pages 41 - 43
1 Apr 2022


Bone & Joint 360
Vol. 11, Issue 2 | Pages 47 - 49
1 Apr 2022


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1054 - 1059
1 Aug 2018
Kelly C Harwood PJ Loughenbury PR Clancy JA Britten S

Aims. Anatomical atlases document classical safe corridors for the placement of transosseous fine wires through the calcaneum during circular frame external fixation. During this process, the posterior tibial neurovascular bundle (PTNVB) is placed at risk, though this has not been previously quantified. We describe a cadaveric study to investigate a safe technique for posterolateral to anteromedial fine wire insertion through the body of the calcaneum. Materials and Methods. A total of 20 embalmed cadaveric lower limbs were divided into two groups. Wires were inserted using two possible insertion points and at varying angles. In Group A, wires were inserted one-third along a line between the point of the heel and the tip of the lateral malleolus while in Group B, wires were inserted halfway along this line. Standard dissection techniques identified the structures at risk and the distance of wires from neurovascular structures was measured. The results from 19 limbs were subject to analysis. Results. In Group A, no wires pierced the PTNVB. Wires were inserted a median 22.3 mm (range 4.7 to 39.6) from the PTNVB; two wires (4%) passed within 5 mm. In Group B, 24 (46%) wires passed within 5 mm of the PTNVB, with 11 wires piercing it. The median distance of wires from the PTNVB was 5.5 mm (range 0 to 30). A Mann–Whitney U test showed that this was significantly closer than in Group A (Hodges–Lehmann shift, 14.06 mm; 95% confidence interval (CI) 10.52 to 16.88; p < 0.0001). In Group B, with an increased angle of insertion there was greater risk to the PTNVB (r. s.  = -0.80; p < 0.01). Conclusion. Insertion of wires using an entry point one-third along a line from the point of the heel to the tip of the lateral malleolus (Group A) appears to be the safer technique. An insertion angle of up to 30° to the coronal plane can be used without significant risk to the PTNVB. Insertion of wires halfway along a line from the point of the heel to the tip of the lateral malleolus (Group B) carried a significantly higher risk of injury to neurovascular structures and, if necessary, an angle of insertion parallel to the coronal plane should be used. Cite this article: Bone Joint J 2018;100-B:1054–9


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint 360
Vol. 11, Issue 2 | Pages 5 - 10
1 Apr 2022
Zheng A Rocos B


Bone & Joint 360
Vol. 11, Issue 2 | Pages 37 - 41
1 Apr 2022


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 486 - 494
4 Apr 2022
Liu W Sun Z Xiong H Liu J Lu J Cai B Wang W Fan C

Aims

The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow.

Methods

We developed the Shanghai Prediction Model for Elbow Stiffness Surgical Outcome (SPESSO) based on a dataset of 551 patients who underwent open arthrolysis of the elbow in four institutions. Demographic and clinical characteristics were collected from medical records. The least absolute shrinkage and selection operator regression model was used to optimize the selection of relevant features. Multivariable logistic regression analysis was used to build the SPESSO. Its prediction performance was evaluated using the concordance index (C-index) and a calibration graph. Internal validation was conducted using bootstrapping validation.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 498 - 502
1 Apr 2015
Deep K Eachempati KK Apsingi S

The restoration of knee alignment is an important goal during total knee arthroplasty (TKA). In the past surgeons aimed to restore neutral limb alignment during surgery. However, previous studies have demonstrated alignment to be dynamic, varying depending on the position of the limb and the degree of weight-bearing, and between patients. We used a validated computer navigation system to measure the femorotibial mechanical angle (FTMA) in 264 knees in 77 male and 55 female healthy volunteers aged 18 to 35 years (mean 26.2). We found the mean supine alignment to be a varus angle of 1.2° (standard deviation (. sd. ) 4), with few patients having neutral alignment. FTMA differs significantly between males and females (with a mean varus of 1.7° (. sd. 4) and 0.4° (. sd. 3.9), respectively; p = 0.008). It changes significantly with posture, the knee hyperextending by a mean of 5.6°, and coronal plane alignment becoming more varus by 2.2° (. sd. 3.6) on standing compared with supine. Knee alignment is different in different individuals and is dynamic in nature, changing with different postures. This may have implications for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions and which may not represent the situation observed during weight-bearing. Cite this article: Bone Joint J 2015; 97-B:498–502


Bone & Joint 360
Vol. 11, Issue 1 | Pages 6 - 12
1 Feb 2022
Khan T Ng J Chandrasenan J Ali FM


Bone & Joint 360
Vol. 11, Issue 1 | Pages 43 - 46
1 Feb 2022


Bone & Joint 360
Vol. 11, Issue 2 | Pages 22 - 26
1 Apr 2022


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 853 - 861
1 Jun 2015
Hilven PH Bayliss L Cosker T Dijkstra PDS Jutte PC Lahoda LU Schaap GR Bramer JAM van Drunen GK Strackee SD van Vooren J Gibbons M Giele H van de Sande MAJ

Vascularised fibular grafts (VFGs ) are a valuable surgical technique in limb salvage after resection of a tumour. The primary objective of this multicentre study was to assess the risk factors for failure and complications for using a VFG after resection of a tumour. . The study involved 74 consecutive patients (45 men and 29 women with mean age of 23 years (1 to 64) from four tertiary centres for orthopaedic oncology who underwent reconstruction using a VFG after resection of a tumour between 1996 and 2011. There were 52 primary and 22 secondary reconstructions. The mean follow-up was 77 months (10 to 195). . In all, 69 patients (93%) had successful limb salvage; all of these united and 65 (88%) showed hypertrophy of the graft. The mean time to union differed between those involving the upper (28 weeks; 12 to 96) and lower limbs (44 weeks; 12 to 250). Fracture occurred in 11 (15%), and nonunion in 14 (19%) patients. . In 35 patients (47%) at least one complication arose, with a greater proportion in lower limb reconstructions, non-bridging osteosynthesis, and in children. These complications resulted in revision surgery in 26 patients (35%). VFG is a successful and durable technique for reconstruction of a defect in bone after resection of a tumour, but is accompanied by a significant risk of complications, that often require revision surgery. Union was not markedly influenced by the need for chemo- or radiotherapy, but should not be expected during chemotherapy. Therefore, restricted weight-bearing within this period is advocated. Cite this article: Bone Joint J 2015;97-B:853–61


Bone & Joint Research
Vol. 4, Issue 6 | Pages 99 - 104
1 Jun 2015
Savaridas T Wallace RJ Dawson S Simpson AHRW

Objectives. There remains conflicting evidence regarding cortical bone strength following bisphosphonate therapy. As part of a study to assess the effects of bisphosphonate treatment on the healing of rat tibial fractures, the mechanical properties and radiological density of the uninjured contralateral tibia was assessed. Methods. Skeletally mature aged rats were used. A total of 14 rats received 1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium chloride (control) daily. Stress at failure and toughness of the tibial diaphysis were calculated following four-point bending tests. Results. Uninjured cortical bone in the iban group had a significantly greater mean (standard deviation (. sd. )), p < 0.001, stress at failure of 219.2 MPa (. sd. 45.99) compared with the control group (169.46 MPa (. sd. 43.32)) following only nine weeks of therapy. Despite this, the cortical bone toughness and work to failure was similar. There was no significant difference in radiological density or physical dimensions of the cortical bone. Conclusions. Iban therapy increases the stress at failure of uninjured cortical bone. This has relevance when normalising the strength of repair in a limb when comparing it with the unfractured limb. However, the 20% increase in stress at failure with iban therapy needs to be interpreted with caution as there was no corresponding increase in toughness or work to failure. Further research is required in this area, especially with the increasing clinical burden of low-energy diaphyseal femoral fractures following prolonged use of bisphosphonates. Cite this article: Bone Joint Res 2015;4:99–104


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1686 - 1694
1 Nov 2021
Yang H Kwak W Kang SJ Song E Seon J

Aims

To determine the relationship between articular cartilage status and clinical outcomes after medial opening-wedge high tibial osteotomy (MOHTO) for medial compartmental knee osteoarthritis at intermediate follow-up.

Methods

We reviewed 155 patients (155 knees) who underwent MOHTO from January 2008 to December 2016 followed by second-look arthroscopy with a mean 5.3-year follow-up (2.0 to 11.7). Arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system. Patients were divided into two groups based on the presence of normal or nearly normal quality cartilage in the medial femoral condyle: good (second-look arthroscopic) status (ICRS grade I or II; n = 70), and poor (second-look arthroscopic) status (ICRS grade III or IV; n = 85) groups at the time of second-look arthroscopy. Clinical outcomes were assessed using the International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and 36-Item Short Form survey.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 760 - 762
1 Jun 2010
Matsubara T Kusuzaki K Matsumine A Murata H Marunaka Y Hosogi S Uchida A Sudo A

Limb salvage involving wide resection and reconstruction is now well established for managing musculoskeletal sarcomas. However, involvement of major nerves and vessels with a large volume of muscle and skin may result in a useless limb, contributing to depression and a low quality of life. We have been studying alternative treatments for musculoskeletal sarcoma since 1990, and have recently established a regime using photodynamic surgery with cells labelled with acridine orange, photodynamic therapy with cells treated similarly and radiodynamic treatment using the effect of X-rays on such cells. These techniques have been used after marginal or intralesional resection of tumours since 1999 and have enabled maintenance of excellent limb function in patients with sarcomas


Bone & Joint Research
Vol. 11, Issue 1 | Pages 6 - 7
3 Jan 2022
Walter N Rupp M Baertl S Alt V