Increased femoral head size may reduce dislocation rates following total hip replacement. The National Joint Registry for England and Wales has highlighted a statistically significant increase in the use of femoral heads ≥ 36 mm in diameter from 5% in 2005 to 26% in 2009, together with an increase in the use of the posterior approach. The aim of this study was to determine whether rates of dislocation have fallen over the same period. National data for England for 247 546 procedures were analysed in order to determine trends in the rate of dislocation at three, six, 12 and 18 months after operation during this time. The 18-month revision rates were also examined. Between 2005 and 2009 there were significant decreases in cumulative dislocations at three months (1.12% to 0.86%), six months (1.25% to 0.96%) and 12 months (1.42% to 1.11%) (all p <
0.001), and at 18 months (1.56% to 1.31%) for the period 2005 to 2008 (p <
0.001). The 18-month revision rates did not significantly change during the study period (1.26% to 1.39%, odds ratio 1.10 (95% confidence interval 0.98 to 1.24), p = 0.118). There was no evidence of changes in the coding of dislocations during this time. These data have revealed a significant reduction in dislocations associated with the use of large femoral head sizes, with no change in the 18-month revision rate.
We present a case of early retrieval of an Oxinium femoral head and corresponding polyethylene liner where there was significant surface damage to the head and polyethylene. The implants were retrieved at the time of revision surgery to correct leg-length discrepancy just 48 hours after the primary hip replacement. Appropriate analysis of the retrieved femoral head demonstrated loss of the Oxinium layer with exposure of the underlying substrate and transfer of titanium from the acetabular shell at the time of a reduction of the index total hip replacement. In addition, the level of damage to the polyethylene was extensive despite only 48 hours The purpose of this report is to highlight the care that is required at the time of reduction, especially with these hard femoral counter-faces such as Oxinium. To our knowledge, the damage occurring at the time of reduction has not been previously reported following the retrieval of an otherwise well-functioning hip replacement.
Arthroscopy of the native hip is an established diagnostic and therapeutic procedure. Its application in the symptomatic replaced hip is still being explored. We describe the use of arthroscopy of the hip in 24 symptomatic patients following total hip replacement, resurfacing arthroplasty of the hip and partial resurfacing (study group), and compared it with arthroscopy of the native hip in 24 patients (control group). A diagnosis was made or confirmed at arthroscopy in 23 of the study group and a therapeutic arthroscopic intervention resulted in relief of symptoms in ten of these. In a further seven patients it led to revision hip replacement. In contrast, arthroscopy in the control group was diagnostic in all 24 patients and the resulting arthroscopic therapeutic intervention provided symptomatic relief in 21. The mean operative time in the study group (59.7 minutes (35 to 93)) was less than in the control group (71 minutes (40 to 100), p = 0.04) but the arthroscopic approach was more difficult in the arthroplasty group. We suggest that arthroscopy has a role in the management of patients with a symptomatic arthroplasty when other investigations have failed to provide a diagnosis.
The combination of an irreparable tear of the rotator cuff and destructive arthritis of the shoulder joint may cause severe pain, disability and loss of independence in the aged. Standard anatomical shoulder replacements depend on a functioning rotator cuff, and hence may fail in the presence of tears in the cuff. Many designs of non-anatomical constrained or semi-constrained prostheses have been developed for cuff tear arthropathy, but have proved unsatisfactory and were abandoned. The DePuy Delta III reverse prosthesis, designed by Grammont, medialises and stabilises the centre of rotation of the shoulder joint and has shown early promise. This study evaluated the mid-term clinical and radiological results of this arthroplasty in a consecutive series of 50 shoulders in 43 patients with a painful pseudoparalysis due to an irreparable cuff tear and destructive arthritis, performed over a period of seven years by a single surgeon. A follow-up of 98% was achieved, with a mean duration of 39 months (8 to 81). The mean age of the patients at the time of surgery was 81 years (59 to 95). The female to male ratio was 5:1. During the seven years, six patients died of natural causes. The clinical outcome was assessed using the American Shoulder and Elbow score, the Oxford Shoulder Score and the Short-form 36 score. A radiological review was performed using the Sirveaux score for scapular notching. The mean American Shoulder and Elbow score was 19 (95% confidence interval (CI) 14 to 23) pre-operatively, and 65 (95% CI 48 to 82) (paired The mean maximum elevation improved from 55° pre-operatively to 105° at final follow-up. There were seven complications during the whole series, although only four patients required further surgery.
There have been comparatively few studies of the incidence of osteolysis and the survival of hybrid and cementless total hip replacements (THRs) in patients younger than 50 years of age. We prospectively reviewed 78 patients (109 hips) with a hybrid THR having a mean age of 43.4 years (21 to 50) and 79 patients (110 hips) with a cementless THR with a mean age of 46.8 years (21 to 49). The patients were evaluated clinically using the Harris hip score, the Western Ontario and McMaster Universities (WOMAC) osteoarthritis score and the University of California, Los Angeles (UCLA) activity score. Radiographs and CT scans were assessed for loosening and osteolysis. The mean follow-up was for 18.4 years (16 to 19) in both groups. The mean post-operative Harris hip scores (91 points Although the long-term fixation of the acetabular metallic shell and the cemented and cementless femoral components was outstanding, wear and peri-acetabular osteolysis constitute the major challenges of THR in young patients.
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Our aim was to determine the success rate of repeated debridement and two-stage cementless revision arthroplasty according to the type of infected total hip replacement (THR). We enrolled 294 patients (294 hips) with an infected THR in the study. There were 222 men and 72 women with a mean age of 55.1 years (24.0 to 78.0). The rate of control of infection after the initial treatment and after repeated debridement and two-stage revisions was determined. The clinical (Harris hip score) and radiological results were evaluated. The mean follow-up was 10.4 years (5.0 to 14.0). The eventual rate of control of infection was 100.0% for early superficial post-operative infection, 98.4% for early deep post-operative infection, 98.5% for late chronic infection and 91.0% for acute haematogenous infection. Overall, 288 patients (98%) maintained a functioning THR at the latest follow-up. All the allografts appeared to be united and there were no failures. These techniques effectively controlled infection and maintained a functional THR with firm fixation in most patients. Repeated debridement and two-stage or repeated two-stage revisions further improved the rate of control of infection after the initial treatment and increased the likelihood of maintaining a functional THR.
We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.
Bone preservation and physiological distribution of forces on the proximal femur are key elements in introducing a successful uncemented total hip replacement. In order to achieve this, in the mid 1990s, we developed an ultra short proximal loading custom-made component with a lateral flare, a high femoral neck osteotomy and without a diaphyseal stem. We report the outcome of 129 custom-made hydroxyapatite-coated uncemented short femoral components inserted into 109 patients between June 1995 and May 2004. The mean age of the patients was 51 years (21 to 71) and the mean follow-up was eight years (4.9 to 14.1). Bone behaviour around the implant was studied on the post-operative radiographs. The mean Harris hip score improved from 44 (8 to 66) pre-operatively to 95 (76 to 100) at final follow-up. The Western Ontario MacMaster University Osteoarthritis index was 93 of 100 at final review. None of the patients reported thigh pain. A total of five hips were revised, three for polyethylene liner exchange and two for complete revision of the acetabular component. No femoral components were revised. The radiological changes in the proximal femur were generally good, as evidenced by spot welds both on the medial and lateral aspects of the femur. No component migrated. The presence of a lateral flare and use of a high osteotomy of the femoral neck provided good clinical and radiological results. The absence of a diaphyseal portion of the stem did not impair stability.
The long-term results of grafting with hydroxyapatite granules for acetabular deficiency in revision total hip replacement are not well known. We have evaluated the results of revision using a modular cup with hydroxyapatite grafting for Paprosky type 2 and 3 acetabular defects at a minimum of ten years’ follow-up. We retrospectively reviewed 49 acetabular revisions at a mean of 135 months (120 to 178). There was one type 2B, ten 2C, 28 3A and ten 3B hips. With loosening as the endpoint, the survival rate was 74.2% (95% confidence interval 58.3 to 90.1). Radiologically, four of the type 3A hips (14%) and six of the type 3B hips (60%) showed aseptic loosening with collapse of the hydroxyapatite layer, whereas no loosening occurred in type 2 hips. There was consolidation of the hydroxyapatite layer in 33 hips (66%). Loosening was detected in nine of 29 hips (31%) without cement and in one of 20 hips (5%) with cement (p = 0.03, Fisher’s exact probability test). The linear wear and annual wear rate did not correlate with loosening. These results suggest that the long-term results of hydroxyapatite grafting with cement for type 2 and 3A hips are encouraging.
The aim of this study was to obtain detailed long-term data on the cement-bone interface in patients with cemented stems, implanted using the constrained fixation technique. A total of eight stems were removed together with adjacent bone during Our results confirm that a complete cement mantle is not essential for the survival of Müller straight stems into the mid term, and support our hypothesis that no benefit to long-term survival can be expected from modern cementing techniques.
We describe a technique to salvage a painful hemiarthroplasty due to erosion of the acetabular cartilage in the absence of loosening of the femoral component. A press-fit metallic acetabular component which matched the femoral component was used as a metal-on-metal articulation. The procedure offered a shorter operation time with less blood loss and no risk of femoral fracture as might have occurred during conventional revision to a total hip replacement. The patient made an unremarkable recovery with a good outcome at follow-up of 15 months.
Cementless acetabular fixation has demonstrated superior long-term durability in total hip replacement, but most series have studied implants with porous metal surfaces. We retrospectively evaluated the results of 100 consecutive patients undergoing total hip replacement where a non-porous Allofit component was used for primary press-fit fixation. This implant is titanium alloy, grit-blasted, with a macrostructure of forged teeth and has a biradial shape. A total of 81 patients (82 hips) were evaluated at final follow-up at a mean of 10.1 years (8.9 to 11.9). The Harris Hip Score improved from a mean 53 points (23 to 73) pre-operatively to a mean of 96 points (78 to 100) at final review. The osseointegration of all acetabular components was radiologically evaluated with no evidence of loosening. The survival rate with revision of the component as the endpoint was 97.5% (95% confidence interval 94 to 100) after 11.9 years. Radiolucency was found in one DeLee-Charnley zone in four acetabular components. None of the implants required revision for aseptic loosening. Two patients were treated for infection, one requiring a two-stage revision of the implant. One femoral stem was revised for osteolysis due to the production of metal wear debris, but the acetabular shell did not require revision. This study demonstrates that a non-porous titanium acetabular component with adjunct surface fixation offers an alternative to standard porous-coated implants.
The design of the Charnley total hip replacement follows the principle of low frictional torque. It is based on the largest possible difference between the radius of the femoral head and that of the outer aspect of the acetabular component. The aim is to protect the bone-cement interface by movement taking place at the smaller radius, the articulation. This is achieved in clinical practice by a 22.225 mm diameter head articulating with a 40 mm or 43 mm diameter acetabular component of ultra-high molecular weight polyethylene. We compared the incidence of aseptic loosening of acetabular components with an outer diameter of 40 mm and 43 mm at comparable depths of penetration with a mean follow-up of 17 years (1 to 40). In cases with no measurable wear none of the acetabular components were loose. With increasing acetabular penetration there was an increased incidence of aseptic loosening which reflected the difference in the external radii, with 1.5% at 1 mm, 8.8% at 2 mm, 9.7% at 3 mm and 9.6% at 4 mm of penetration in favour of the larger 43 mm acetabular component. Our findings support the Charnley principle of low frictional torque. The level of the benefit is in keeping with the predicted values.
The outcome of total hip replacement (THR) is potentially affected by the body mass index (BMI) of the patient. We studied the outcome of 2026 consecutive primary cementless THRs performed for osteoarthritis. The mean follow-up was 6.3 years (0 to 11.71) and no patient was lost to follow-up for survival analysis. The patients were divided into two groups according to their BMI as follows: non-obese (BMI <
30 kg/m2) and obese (BMI ≥ 30 kg/m2). The obese patient undergoing surgery was found to be significantly younger (p <
0.001). The log-rank test for equality of survival showed no difference in the mid-term survival (p = 0.552) with an estimated survival at 11 years of 95.2% (95% CI 92.5 to 98.0) in the non-obese and 96.7% (95% CI 94.9 to 98.5) in the obese groups. The clinical and radiological outcome was determined in a case-matched study performed on 134 obese individuals closely matched with 134 non-obese controls. The non-obese group was found to have a significantly higher post-operative Harris hip score (p <
0.001) and an increased range of movement, but overall satisfaction with surgery was comparable with that of the obese patients. Radiological analysis of the acetabular and femoral components showed no significant differences with regard to radiolucent lines, osteolysis, ingrowth of the femoral component, the acetabular inclination angle or alignment of the femoral component. Our results suggest that the survival of cementless THR is not adversely affected by obesity. Obese patients can therefore be counselled that despite a lower clinical score, they should expect to be satisfied with the result of their THR with a mid-term survival rate equivalent to that of non-obese patients.
In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.
Migration of the acetabular component may give rise to oval-shaped bone defects in the acetabulum. The oblong implant is designed to fill these defects and achieve a stable cementless anchorage with no significant bone loss. We prospectively reviewed 133 oblong long oblique revision components at a mean follow-up of 9.74 years (0.6 to 14). All had been used in revisions for defects of type IIB to IIIB according to Paprosky. Aseptic loosening was the reason for revision in 11 cases (8.3%) and deep infection in seven (5.3%). The probability of implant survival over a 12-year follow-up estimated by the Kaplan-Meier method gave a survival rate of 0.85% respectively 0.90% when deep infection was excluded as the endpoint. Our study supports the use of these components in defects from IIB to IIIA. The main precondition for success is direct contact of more than half of the surface of the implant with the host acetabular bone.
Successful healing of a nine-year tibial nonunion resistant to six previous surgical procedures was achieved by tissue engineering. We used autologous bone marrow stromal cells (BMSCs) expanded to 5 × 106 cells after three weeks’ tissue culture. Calcium sulphate (CaSO4) in pellet form was combined with these cells at operation. The nonunion was clinically and radiologically healed two months after implantation. This is the description of on healing of a long-standing tibial nonunion by tissue engineering. The successful combination of BMSCs and CaSO4 has not to our knowledge been reported in a clinical setting.
We present a 25-year-old patient with juvenile rheumatoid arthritis and ankylosis of both hips and both knees treated by staged bilateral hip and knee arthroplasty. She was followed up for 18 months. We discuss the pre-operative planning, surgical details and post-operative rehabilitation.
We have reviewed 70 Harris-Galante uncemented acetabular components implanted as hybrid hip replacements with cemented stems between 1991 and 1995 in 53 patients whose mean age was 40 years (19 to 49). The mean follow-up was for 13.6 years (12 to 16) with no loss to follow-up. We assessed the patients both clinically and radiologically. The mean Oxford hip score was 20 (12 to 46) and the mean Harris hip score 81 (37 to 100) at the final review. Radiologically, 27 hips (39%) had femoral osteolysis, 13 (19%) acetabular osteolysis, and 31 (44%) radiolucent lines around the acetabular component. Kaplan-Meier survival curves were constructed for the outcomes of revision of the acetabular component, revision of the component and polyethylene liner, and impending revision for progressive osteolysis. The cumulative survival for revision of the acetabular component was 94% (95% confidence interval 88.4 to 99.7), for the component and liner 84% (95% confidence interval 74.5 to 93.5) and for impending revision 55.3% (95% confidence interval 40.6 to 70) at 16 years. Uncemented acetabular components with polyethylene liners undergo silent lysis and merit regular long-term radiological review.