This study aimed to investigate the effect of ATDC5 chondrocytes were cultured in insulin-transferrin-selenium medium to induce differentiation. Cells were transfected with pcDNA3.0 plasmids with either a wild-type (WT) or mutated (MUT) Aims
Methods
Chondrocyte hypertrophy represents a crucial turning point during endochondral bone development. This process is tightly regulated by various factors, constituting a regulatory network that maintains normal bone development. Histone deacetylase 4 (HDAC4) is the most well-characterized member of the HDAC class IIa family and participates in different signalling networks during development in various tissues by promoting chromatin condensation and transcriptional repression. Studies have reported that HDAC4-null mice display premature ossification of developing bones due to ectopic and early-onset chondrocyte hypertrophy. Overexpression of HDAC4 in proliferating chondrocytes inhibits hypertrophy and ossification of developing bones, which suggests that HDAC4, as a negative regulator, is involved in the network regulating chondrocyte hypertrophy. Overall, HDAC4 plays a key role during bone development and disease. Thus, understanding the role of HDAC4 during chondrocyte hypertrophy and endochondral bone formation and its features regarding the structure, function, and regulation of this process will not only provide new insight into the mechanisms by which HDAC4 is involved in chondrocyte hypertrophy and endochondral bone development, but will also create a platform for developing a therapeutic strategy for related diseases.
Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes. Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Objectives
Methods
It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells.Aims
Materials and Methods
Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage. Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).Aim
Patients and Methods
Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM. Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.Objectives
Methods
Legg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition. Finite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.Objectives
Methods
Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice. Tibial fractures were created and then stabilized in control wild-type (WT) and Objectives
Methods
This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p.Objectives
Methods
The injured anterior cruciate ligament (ACL) is thought to exhibit an impaired healing response, and attempts at surgical repair have not been successful. Connective tissue growth factor (CTGF) is reported to be associated with wound healing, probably through transforming growth factor beta 1 (TGF-β1). A rabbit ACL injury model was used to study the effect of CTGF on ligament recovery. Quantitative real-time PCR (qRT-PCR) was performed for detection of changes in RNA levels of TGF-β1, type 1 collagen (COL1), type 2 collagen (COL2), SRY-related high mobility group-box gene9 (SOX9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase 13 (MMP-13). Expression of related proteins was detected by Western blotting.Objectives
Methods
The aim of this study was to identify key pathological genes in osteoarthritis (OA). We searched and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) of joint synovial tissues from OA and normal individuals. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses were used to assess the function of identified DEGs. The protein-protein interaction (PPI) network and transcriptional factors (TFs) regulatory network were used to further explore the function of identified DEGs. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the result of bioinformatics analysis. Electronic validation was performed to verify the expression of selected DEGs. The diagnosis value of identified DEGs was accessed by receiver operating characteristic (ROC) analysis.Objectives
Methods
Demineralised bone matrix (DBM) is rarely used for the local
delivery of prophylactic antibiotics. Our aim, in this study, was
to show that a graft with a bioactive glass and DBM combination,
which is currently available for clinical use, can be loaded with
tobramycin and release levels of antibiotic greater than the minimum
inhibitory concentration for Antibiotic was loaded into a graft and subsequently evaluated
for drug elution kinetics and the inhibition of bacterial growth.
A rat femoral condylar plug model was used to determine the effect
of the graft, loaded with antibiotic, on bone healing.Aims
Materials and Methods
We investigated the development of CT-based bony
radiological parameters associated with femoroacetabular impingement
(FAI) in a paediatric and adolescent population with no known orthopaedic
hip complaints. We retrospectively reformatted and reoriented
225 abdominal CTs into standardised CT pelvic images with neutral
pelvic tilt and inclination (244 female and 206 male hips) in patients
ranging from two to 19 years of age (mean 10.4 years). The Tönnis
angle, acetabular depth ratio, lateral centre–edge angle, acetabular
version and α-angle were assessed. Acetabular measurements demonstrated increased acetabular coverage
with age and/or progressive ossification of the acetabulum. The α-angle
decreased with age and/or progressive cortical bone development
and resultant narrowing of the femoral neck. Cam and pincer morphology
occurred as early as ten and 12 years of age, respectively, and
their prevalence in the adolescent patient population is similar
to that reported in the adult literature. Future aetiological studies
of FAI will need to focus on the early adolescent population. Cite this article:
A self-control ratio, the spine-pelvis index
(SPI), was proposed for the assessment of patients with adolescent idiopathic
scoliosis (AIS) in this study. The aim was to evaluate the disproportionate
growth between the spine and pelvis in these patients using SPI.
A total of 64 female patients with thoracic AIS were randomly enrolled
between December 2010 and October 2012 (mean age 13 years, standard
deviation ( No significant difference in SPI was found in different age groups
in the control group, making the SPI an age-independent parameter
with a mean value of 2.219 (2.164 to 2.239). We also found that
the SPI was not related to maturity in the control group. This study, for the first time, used a self-control ratio to
confirm the disproportionate patterns of growth of the spine and
pelvis in patients with thoracic AIS, highlighting that the SPI
is not affected by age or maturity. Cite this article:
Excessive acetabular coverage is the most common cause of pincer-type
femoroacetabular impingement. To date, an association between acetabular
over-coverage and genetic variations has not been studied. In this
study we investigated the association between single nucleotide
polymorphisms (SNPs) of paralogous Homeobox (HOX)9 genes and acetabular
coverage in Japanese individuals to identify a possible genetic
variation associated with acetabular over-coverage. We investigated 19 total SNPs in the four HOX9 paralogs, then
focused in detail on seven of those located in the 3’ untranslated
region of Objectives
Methods
We compared the accuracy of the growth remaining
method of assessing leg-length discrepancy (LLD) with the straight-line
graph method, the multiplier method and their variants. We retrospectively
reviewed the records of 44 patients treated by percutaneous epiphysiodesis
for LLD. All were followed up until maturity. We used the modified Green–Anderson
growth-remaining method (Method 1) to plan the timing of epiphysiodesis.
Then we presumed that the other four methods described below were
used pre-operatively for calculating the timing of epiphysiodesis. We
then assumed that these four methods were used pre-operatively.
Method 2 was the original Green–Anderson growth-remaining method;
Method 3, Paley’s multiplier method using bone age; Method 4, Paley’s
multiplier method using chronological age; and Method 5, Moseley’s
straight-line graph method. We compared ‘Expected LLD at maturity
with surgery’ with ‘Final LLD at maturity with surgery’ for each
method. Statistical analysis revealed that ‘Expected LLD at maturity
with surgery’ was significantly different from ‘Final LLD at maturity
with surgery’. Method 2 was the most accurate. There was a significant
correlation between ‘Expected LLD at maturity with surgery’ and
‘Final LLD at maturity with surgery’, the greatest correlation being
with Method 2. Generally all the methods generated an overcorrected
value. No method generates the precise ‘Expected LLD at maturity
with surgery’. It is essential that an analysis of the pattern of
growth is taken into account when predicting final LLD. As many
additional data as possible are required. Cite this article:
The purpose of this study was to evaluate the
long-term functional and radiological outcomes of arthroscopic removal
of unstable osteochondral lesions with subchondral drilling in the
lateral femoral condyle. We reviewed the outcome of 23 patients
(28 knees) with stage III or IV osteochondritis dissecans lesions
of the lateral femoral condyle at a mean follow-up of 14 years (10
to 19). The functional clinical outcomes were assessed using the Lysholm
score, which improved from a mean of 38.1 ( We found radiological evidence of degenerative changes in the
third or fourth decade of life at a mean of 14 years after arthroscopic
excision of the loose body and subchondral drilling for an unstable
osteochondral lesion of the lateral femoral condyle. Clinical and
functional results were more satisfactory.
Interest in football continues to increase, with ever younger age groups participating at a competitive level. Football academies have sprung up under the umbrella of professional clubs in an attempt to nurture and develop such talent in a safe manner. However, increased participation predisposes the immature skeleton to injury. Over a five-year period we have prospectively collected data concerning all injuries presenting to the medical team at Newcastle United football academy. We identified 685 injuries in our cohort of 210 players with a mean age of 13.5 years (9 to 18). The majority of injuries (542;79%) were to the lower limb. A total of 20 surgical procedures were performed. Contact injuries accounted for 31% (210) of all injuries and non-contact for 69% (475).The peaks of injury occurred in early September and March. The 15- and 16-year-old age group appeared most at risk, independent of hours of participation. Strategies to minimise injury may be applicable in both the academy setting and the wider general community.
Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1+) and stem cell factor receptor, CD117 (c-kit+) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1+ mononuclear cell (MNCsca-1+) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNCsca-1+,c-kit+ counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours. Sca-1+ mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium. Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures.
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis