Advertisement for orthosearch.org.uk
Results 21 - 40 of 40
Results per page:
Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 680 - 685
1 May 2017
Morris R Hossain M Evans A Pallister I

Aims

This study describes the use of the Masquelet technique to treat segmental tibial bone loss in 12 patients.

Patients and Methods

This retrospective case series reviewed 12 patients treated between 2010 and 2015 to determine their clinical outcome. Patients were mostly male with a mean age of 36 years (16 to 62). The outcomes recorded included union, infection and amputation. The mean follow-up was 675 days (403 to 952).


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1349 - 1354
1 Oct 2014
Conway J Mansour J Kotze K Specht S Shabtai L

The treatment of infected nonunions is difficult. Antibiotic cement-coated (ACC) rods provide stability as well as delivering antibiotics. We conducted a review of 110 infected nonunions treated with ACC rods. Patients were divided into two groups: group A (67 patients) with an infected arthrodesis, and group B (43 patients) with an infected nonunion in a long bone. In group A, infected arthrodesis, the success rate after the first procedure was 38/67 (57%), 29/67 (43%) required further surgery for either control of infection or non-union. At last follow-up, five patients required amputation, representing a limb salvage rate of 62/67 (93%) overall. In all, 29/67 (43%) presented with a bone defect with a mean size of 6.78 cm (2 to 25). Of those with a bone defect, 13/29 (45%) required further surgery and had a mean size of defect of 7.2 cm (3.5 to 25). The cultures were negative in 17/67 (26%) and the most common organism cultured was methicillin-resistant staphylococcus aureus (MRSA) (23/67, (35%)). In group B, long bones nonunion, the success rate after the first procedure was 26/43 (60%), 17/43 (40%) required further surgery for either control of infection or nonunion. The limb salvage rate at last follow-up was 43/43 (100%). A total of 22/43 (51%) had bone defect with a mean size of 4.7 cm (1.5 to 11.5). Of those patients with a bone defect, 93% required further surgery with a mean size of defect of 5.4 cm (3 to 8.5). The cultures were negative in 10/43 (24%) and the most common organism cultured was MRSA, 15/43 (35%). ACC rods are an effective form of treatment for an infected nonunion, with an acceptable rate of complications.

Cite this article: Bone Joint J 2014; 96-B:1349–54


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives

To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects.

Materials and Methods

Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation.


Bone & Joint 360
Vol. 6, Issue 5 | Pages 30 - 33
1 Oct 2017


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims

It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients.

Patients and Methods

A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 423 - 432
1 Jul 2017
van der Stok J Hartholt KA Schoenmakers DAL Arts JJC

Objectives

The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery.

Methods

A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 276 - 282
1 Feb 2017
Mumith A Coathup M Chimutengwende-Gordon M Aston W Briggs T Blunn G

Aims

Massive endoprostheses rely on extra-cortical bone bridging (ECBB) to enhance fixation. The aim of this study was to investigate the role of selective laser sintered (SLS) porous collars in augmenting the osseointegration of these prostheses.

Materials and Methods

The two novel designs of porous SLS collars, one with small pores (Ø700 μm, SP) and one with large pores (Ø1500 μm, LP), were compared in an ovine tibial diaphyseal model. Osseointegration of these collars was compared with that of a clinically used solid, grooved design (G). At six months post-operatively, the ovine tibias were retrieved and underwent radiological and histological analysis.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 565 - 570
1 Apr 2010
Blum ALL Bongiovanni JC Morgan SJ Flierl MA dos Reis FB

We undertook a retrospective study of 50 consecutive patients (41 male, 9 female) with an infected nonunion and bone defect of the femoral shaft who had been treated by radical debridement and distraction osteogenesis. Their mean age was 29.9 years (9 to 58) and they had a mean of 3.8 (2 to 19) previous operations. They were followed for a mean of 5.9 years (2.0 to 19.0). The mean duration of the distraction osteogenesis was 24.5 months (2 to 39). Pin-track infection was observed in all patients. The range of knee movement was reduced and there was a mean residual leg-length discrepancy of 1.9 cm (0 to 8) after treatment. One patient required hip disarticulation to manage intractable sepsis. In all, 13 patients had persistant pain. Bony union was achieved in 49 patients at a mean of 20.7 months (12 to 35).

Although distraction osteogenesis is commonly used for the treatment of infected femoral nonunion with bone defects, it is associated with a high rate of complications.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 845 - 850
1 Jun 2014
Romanò CL Logoluso N Meani E Romanò D De Vecchi E Vassena C Drago L

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed.

In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups.

After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate.

Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes.

Cite this article: Bone Joint J 2014; 96-B:845–50.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1667 - 1672
1 Dec 2013
Oh C Apivatthakakul T Oh J Kim J Lee H Kyung H Baek S Jung G

Although gradual bone transport may permit the restoration of large-diameter bones, complications are common owing to the long duration of external fixation. In order to reduce such complications, a new technique of bone transport involving the use of an external fixator and a locking plate was devised for segmental tibial bone defects.

A total of ten patients (nine men, one woman) with a mean age at operation of 40.4 years (16 to 64) underwent distraction osteogenesis with a locking plate to treat previously infected post-traumatic segmental tibial defects. The locking plate was fixed percutaneously to bridge proximal and distal segments, and was followed by external fixation. After docking, percutaneous screws were fixed at the transported segment through plate holes. At the same time, bone grafting was performed at the docking site with the external fixator removed.

The mean defect size was 5.9 cm (3.8 to 9.3) and mean external fixation index was 13.4 days/cm (11.8 to 19.5). In all cases, primary union of the docking site and distraction callus was achieved, with an excellent bony result. There was no recurrence of deep infection or osteomyelitis, and with the exception of one patient with a pre-existing peroneal nerve injury, all achieved an excellent or good functional result.

With short external fixation times and low complication rates, bone transport with a locking plate could be recommended for patients with segmental tibial defects.

Cite this article: Bone Joint J 2013;95-B:1667–72.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 777 - 781
1 Jun 2013
Abolghasemian M Drexler M Abdelbary H Sayedi H Backstein D Kuzyk P Safir O Gross AE

In this retrospective study we evaluated the proficiency of shelf autograft in the restoration of bone stock as part of primary total hip replacement (THR) for hip dysplasia, and in the results of revision arthroplasty after failure of the primary arthroplasty. Of 146 dysplastic hips treated by THR and a shelf graft, 43 were revised at an average of 156 months, 34 of which were suitable for this study (seven hips were excluded because of insufficient bone-stock data and two hips were excluded because allograft was used in the primary THR). The acetabular bone stock of the hips was assessed during revision surgery. The mean implant–bone contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%) at the time of the revision, which was a significant improvement (p < 0.001). At primary THR all hips had had a segmental acetabular defect > 30%, whereas only five (15%) had significant segmental bone defects requiring structural support at the time of revision. In 15 hips (44%) no bone graft or metal augments were used during revision.

A total of 30 hips were eligible for the survival study. At a mean follow-up of 103 months (27 to 228), two aseptic and two septic failures had occurred. Kaplan-Meier survival analysis of the revision procedures demonstrated a ten-year survival rate of 93.3% (95% confidence interval (CI) 78 to 107) with clinical or radiological failure as the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for non-revised cases at final follow-up.

Our results indicate that the use of shelf autografts during THR for dysplastic hips restores bone stock, contributing to the favourable survival of the revision arthroplasty should the primary procedure fail.

Cite this article: Bone Joint J 2013;95-B:777–81.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 841 - 851
1 Jul 2006
Lee EH Hui JHP


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1555 - 1560
1 Dec 2009
Lingaraj K Teo YH Bergman N

We investigated the early results of modular porous metal components used in 23 acetabular reconstructions associated with major bone loss. The series included seven men and 15 women with a mean age of 67 years (38 to 81), who had undergone a mean of two previous revisions (1 to 7).

Based on Paprosky’s classification, there were 17 type 3A and six type 3B defects. Pelvic discontinuity was noted in one case. Augments were used in 21 hips to support the shell and an acetabular component-cage construct was implanted in one case. At a mean follow-up of 41 months (24 to 62), 22 components remained well fixed. Two patients required rerevision of the liners for prosthetic joint instability. Clinically, the mean Harris Hip Score improved from 43.0 pre-operatively (14 to 86) to 75.7 post-operatively (53 to 100). The mean pre-operative Merle d’Aubigné score was 8.2 (3 to 15) and improved to a mean of 13.7 (11 to 18) post-operatively.

These short-term results suggest that modular porous metal components are a viable option in the reconstruction of Paprosky type 3 acetabular defects. More data are needed to determine whether the system yields greater long-term success than more traditional methods, such as reconstruction cages and structural allografts.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1257 - 1262
1 Sep 2009
Sundar S Pendegrass CJ Oddy MJ Blunn GW

We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an in vivo ovine model of reconstruction of the extensor mechanism at the knee. We hypothesised that augmentation of the tendon-implant interface with DBM would enhance the functional and histological outcomes as compared with previously reported control reconstructions without DBM. Function was assessed at six and 12 weeks postoperatively, and histological examination was undertaken at 12 weeks.

A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 304 - 309
1 Mar 2009
Kerboull L Hamadouche M Kerboull M

We describe 129 consecutive revision total hip replacements using a Charnley-Kerboull femoral component of standard length with impaction allografting. The mean follow-up was 8.2 years (2 to 16). Additionally, extramedullary reinforcement was performed using struts of cortical allograft in 49 hips and cerclage wires in 30.

There was one intra-operative fracture of the femur but none later. Two femoral components subsided by 5 mm and 8 mm respectively, and were considered to be radiological failures. No further revision of a femoral component was required. The rate of survival of the femoral component at nine years, using radiological failure as the endpoint, was 98%. Our study showed that impaction grafting in association with a Charnley-Kerboull femoral component has a low rate of subsidence. Reconstruction of deficiencies of distal bone with struts of cortical allograft appeared to be an efficient way of preventing postoperative femoral fracture for up to 16 years.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 78 - 83
1 Jan 2008
Schwab JH Healey JH Athanasian EA

We describe a consecutive series of five patients with bone or soft-tissue sarcomas of the elbow and intra-articular extension treated by complex soft tissue, allograft bone and prosthetic joint replacement after wide extra-articular en bloc excision. All had a pedicled myocutaneous latissimus dorsi rotation flap for soft-tissue cover and reconstruction of the triceps. Wide negative surgical margins were obtained in all five patients. No local wound complications or infections were seen. There were no local recurrences at a mean follow-up of 60 months (20 to 105). The functional results were excellent in four patients and good in one. Longer term follow-up is necessary to confirm the durability of the elbow reconstruction.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1122 - 1129
1 Aug 2007
Watanabe K Tsuchiya H Sakurakichi K Tomita K

The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone.

Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.