Advertisement for orthosearch.org.uk
Results 21 - 40 of 416
Results per page:

Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results. MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation, BMD and BV/TV, as well as maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. In addition, the mRNA and protein levels of SMAD6 were decreased, while BMP-2 and BMP-7 levels were elevated in response to upregulated miR-186 and SMAD6 silencing. Conclusion. In conclusion, the study indicated that miR-186 could activate the BMP signalling pathway to promote fracture healing by inhibiting SMAD6 in a mouse model of femoral fracture. Cite this article: Bone Joint Res 2019;8:550–562


Bone & Joint Research
Vol. 8, Issue 10 | Pages 472 - 480
1 Oct 2019
Hjorthaug GA Søreide E Nordsletten L Madsen JE Reinholt FP Niratisairak S Dimmen S

Objectives. Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. Methods. A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks. Results. For ultimate bending moment, the median ratio between fractured and non-fractured tibia was 0.61 (interquartile range (IQR) 0.45 to 0.82) in the Pi group, 0.44 (IQR 0.42 to 0.52) in the Pd group, and 0.50 (IQR 0.41 to 0.75) in the control group (n = 44; p = 0.068). There were no differences between the groups for stiffness, energy, deflection, callus diameter, DXA measurements (n = 64), histomorphometrically osteoid/bone ratio, or callus area (n = 20). Conclusion. This study demonstrates no negative effect of immediate or delayed short-term administration of parecoxib on diaphyseal fracture healing in rats. Cite this article: G. A. Hjorthaug, E. Søreide, L. Nordsletten, J. E. Madsen, F. P. Reinholt, S. Niratisairak, S. Dimmen. Short-term perioperative parecoxib is not detrimental to shaft fracture healing in a rat model. Bone Joint Res 2019;8:472–480. DOI: 10.1302/2046-3758.810.BJR-2018-0341.R1


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives. Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing. Methods. A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone. Results. Fracture healing occurred without evidence of external callus on plain radiographs. At six weeks after fracture fixation, the mean stress at failure in a four-point bending test was 24.65 N/mm. 2. (. sd. 6.15). Histology revealed ‘cutting-cones’ traversing the fracture site. In controls where a uniaxial external fixator was used, bone healing occurred via external callus formation. Conclusions. A simple, reproducible model of direct fracture healing in rat tibia that mimics clinical practice has been developed for use in future studies of direct fracture healing


Aims. In wound irrigation, 1 mM ethylenediaminetetraacetic acid (EDTA) is more efficacious than normal saline (NS) in removing bacteria from a contaminated wound. However, the optimal EDTA concentration remains unknown for different animal wound models. Methods. The cell toxicity of different concentrations of EDTA dissolved in NS (EDTA-NS) was assessed by Cell Counting Kit-8 (CCK-8). Various concentrations of EDTA-NS irrigation solution were compared in three female Sprague-Dawley rat models: 1) a skin defect; 2) a bone exposed; and 3) a wound with an intra-articular implant. All three models were contaminated with Staphylococcus aureus or Escherichia coli. EDTA was dissolved at a concentration of 0 (as control), 0.1, 0.5, 1, 2, 5, 10, 50, and 100 mM in sterile NS. Samples were collected from the wounds and cultured. The bacterial culture-positive rate (colony formation) and infection rate (pus formation) of each treatment group were compared after irrigation and debridement. Results. Cell viability intervened below 10 mM concentrations of EDTA-NS showed no cytotoxicity. Concentrations of 1, 2, and 5 mM EDTA-NS had lower rates of infection and positive cultures for S. aureus and E. coli compared with other concentrations in the skin defect model. For the bone exposed model, 0.5, 1, and 2 mM EDTA-NS had lower rates of infection and positive cultures. For intra-articular implant models 10 and 50 mM, EDTA-NS had the lowest rates of infection and positive cultures. Conclusion. The concentrations of EDTA-NS below 10 mM are safe for irrigation. The optimal concentration of EDTA-NS varies by type of wound after experimental inoculation of three types of wound. Cite this article: Bone Joint Res 2021;10(1):68–76


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives. In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. Methods. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score. Results. Both models showed an increase in joint pain as indicated by a significant (p < 0.05) decrease in the values of %HLWD at one week post-surgery. In the osteochondral injury model, the %HLWD returned to normal within three weeks, while in the ACLT model, a significant decrease in the %HLWD was persistent over an eight-week period. In addition, OA progression was more advanced in the ACLT model than in the osteochondral injury model. Furthermore, the ACLT model exhibited a higher mean OA score than that of the osteochondral injury model at 12 weeks. Conclusion. The development of pain patterns in the ACLT and osteochondral injury models is different in that the OA progression was significant in the ACLT model. Although both can be used as models for a post-traumatic injury of the knee, the selection of appropriate models for OA in preclinical studies should be specified and relevant to the clinical scenario. Cite this article: T. Tawonsawatruk, O. Sriwatananukulkit, W. Himakhun, W. Hemstapat. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018;7:244–251. DOI: 10.1302/2046-3758.73.BJR-2017-0121.R2


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives. We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods. Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results. When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion. This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims. Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. Methods. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI. Results. We confirmed an interaction between miR-381 and BRD4, and showed that miR-381 overexpression inhibited the expression of BRD4 in DRG cells as well as the apoptosis of DRG cells through WNT5A via activation of Ras homologous A (RhoA)/Rho-kinase activity. Moreover, treatment of MSC-EVs rescued neuron apoptosis and promoted the recovery of SCI through inhibition of the BRD4/WNT5A axis. Conclusion. Taken altogether, miR-381 derived from MSC-EVs can promote the recovery of SCI through BRD4/WNT5A axis, providing a new perspective on SCI treatment. Cite this article: Bone Joint Res 2021;10(5):328–339


Bone & Joint Research
Vol. 7, Issue 12 | Pages 620 - 628
1 Dec 2018
Tätting L Sandberg O Bernhardsson M Ernerudh J Aspenberg† P

Objectives. Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Methods. Ten-week-old male C56/Bl6J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop. Results. Between day 3 and 5, the granulocytes increased in the cancellous model, whereas the lymphocytes (T cells, B cells, NK cells) and monocytes (CD11b+, F4/80+, CD206+, CD14+) increased in the cortical model. Conclusion. These results suggest an acute type of inflammation in cancellous bone healing, and a more chronic inflammation in cortical healing. This might explain, in part, why cancellous healing is faster and more resistant to anti-inflammatory drugs than are diaphyseal fractures. Cite this article: L. Tätting, O. Sandberg, M. Bernhardsson, J. Ernerudh, P. Aspenberg. Different composition of leucocytes in cortical and cancellous bone healing in a mouse model. Bone Joint Res 2018;7:620–628. DOI: 10.1302/2046-3758.712.BJR-2017-0366.R2


Bone & Joint Research
Vol. 7, Issue 11 | Pages 601 - 608
1 Nov 2018
Hsu W Hsu W Hung J Shen W Hsu RW

Objectives. Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining BMD in postmenopausal women. The contribution of exercise to the regulation of osteogenesis in osteoblasts remains unclear. We therefore investigated the effect of exercise on osteoblasts in ovariectomized mice. Methods. We compared the activity of differentially expressed genes of osteoblasts in ovariectomized mice that undertook exercise (OVX+T) with those that did not (OVX), using microarray and bioinformatics. Results. Many inflammatory pathways were significantly downregulated in the osteoblasts after exercise. Meanwhile, IBSP and SLc13A5 gene expressions were upregulated in the OVX+T group. Furthermore, in in vitro assay, IBSP and SLc13A5 mRNAs were also upregulated during the osteogenic differentiation of MC3T3-E1 and 7F2 cells. Conclusion. These findings suggest that exercise may not only reduce the inflammatory environment in ovariectomized mice, indirectly suppressing the overactivated osteoclasts, but may also directly activate osteogenesis-related genes in osteoblasts. Exercise may thus prevent the bone loss caused by oestrogen deficiency through mediating the imbalance between the bone resorptive activity of osteoclasts and the bone formation activity of osteoblasts. Cite this article: W-B. Hsu, W-H. Hsu, J-S. Hung, W-J. Shen, R. W-W. Hsu. Transcriptome analysis of osteoblasts in an ovariectomized mouse model in response to physical exercise. Bone Joint Res 2018;7:601–608. DOI: 10.1302/2046-3758.711.BJR-2018-0075.R2


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives. The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12. Results. No MMP12 expression was detected in the nucleus pulposus. Expression of MMP12 in the annulus progressively increased from group I to groups II and III, mainly at the concave side. Many growth plate chondrocytes expressed MMP12 in the control group, less in group I and rare in groups II and III. Changes in cell phenotype and reduction of cell number were observed, together with disorganisation of matrix microstructure similar to disc degeneration. ProMMP12 was detected at the area of 54 kDa and active MMP12 at 22 kDa. Conclusions. Expression of MMP12 after application of asymmetric loading in a rat tail increased in the intervertebral disc but decreased in the growth plate and correlated with the degree of the deformity and the side of the wedged disc. Cite this article: Bone Joint Res 2014;3:273–9


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1126 - 1131
1 Aug 2016
Shiels SM Cobb RR Bedigrew KM Ritter G Kirk JF Kimbler A Finger Baker I Wenke JC

Aims. Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection. Materials and Methods. Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing. Results. We found that tobramycin loaded into a graft composed of bioglass and DBM eluted antibiotic above the minimum inhibitory concentration for three days in vitro. It was also found that the antibiotic loaded into the graft produced no adverse effects on the bone healing properties of the DBM at a lower level of antibiotic. Conclusion. This antibiotic-loaded bone void filler may represent a promising option for the delivery of local antibiotics in orthopaedic surgery. Cite this article: Bone Joint J 2016;98-B:1126–31


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1132 - 1137
1 Aug 2016
Lawendy A Bihari A Sanders DW Badhwar A Cepinskas G

Aims. Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs. Methods. Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy. Results. We found that hepatocellular injury was significantly higher in the compartment syndrome group (192 PI-labelled cells/10. -1 . mm. 3. , standard error of the mean (. sem. ) 51) compared with controls (30 PI-labelled cells/10. -1 . mm. 3. , . sem . 12, p < 0.01). The number of adherent venular white blood cells was significantly higher for the compartment syndrome group (5 leukocytes/30s/10 000 μm. 2. , . sem 1. ) than controls (0.2 leukocytes/30 s/10 000 μm. 2. , . sem . 0.2, p < 0.01). Volumetric blood flow was not significantly different between the two groups, although there was an increase in the heterogeneity of perfusion. Conclusions. Compartment syndrome can be accompanied by severe systemic inflammation and end organ damage. This study provides evidence of the relationship between compartment syndrome in a limb and systemic inflammation and dysfunction in a remote organ. Cite this article: Bone Joint J 2016; 98-B:1132–7


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives. Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes. Methods. A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage. Results. The HFS diet, in the absence of trauma, resulted in increased joint damage in the shoulder and knee joints of rats. Hip joint damage, however, was not significantly affected by DIO, consistent with findings in human studies. The total Mankin score was increased in DIO animals compared with the chow group, and was associated with percentage of body fat. Positive significant predictive relationships for total Mankin score were found between body fat and two serum mediators (interleukin 1 alpha (IL-1α) and vascular endothelial growth factor (VEGF)). Conclusion. Systemic inflammatory alterations from DIO in this model system may result in a higher risk for development of knee, shoulder, and multi-joint damage with a HFS diet. Cite this article: K. H. Collins, D. A. Hart, R. A. Seerattan, R. A. Reimer, W. Herzog. High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model. Bone Joint Res 2018;7:274–281. DOI: 10.1302/2046-3758.74.BJR-2017-0201.R2


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 572 - 576
1 Apr 2015
Polfer EM Hope DN Elster EA Qureshi AT Davis TA Golden D Potter BK Forsberg JA

Currently, there is no animal model in which to evaluate the underlying physiological processes leading to the heterotopic ossification (HO) which forms in most combat-related and blast wounds. We sought to reproduce the ossification that forms under these circumstances in a rat by emulating patterns of injury seen in patients with severe injuries resulting from blasts. We investigated whether exposure to blast overpressure increased the prevalence of HO after transfemoral amputation performed within the zone of injury. We exposed rats to a blast overpressure alone (BOP-CTL), crush injury and femoral fracture followed by amputation through the zone of injury (AMP-CTL) or a combination of these (BOP-AMP). The presence of HO was evaluated using radiographs, micro-CT and histology. HO developed in none of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats. Exposure to blast overpressure increased the prevalence of HO. This model may thus be used to elucidate cellular and molecular pathways of HO, the effect of varying intensities of blast overpressure, and to evaluate new means of prophylaxis and treatment of heterotopic ossification. Cite this article: Bone Joint J 2015;97-B:572–6


Objectives. Irrigation is the cornerstone of treating skeletal infection by eliminating pathogens in wounds. A previous study shows that irrigation with normal saline (0.9%) and ethylenediaminetetraacetic acid (EDTA) could improve the removal of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) compared with normal saline (NS) alone. However, it is still unclear whether EDTA solution is effective against infection with drug-resistant bacteria. Methods. We established three wound infection models (skin defect, bone-exposed, implant-exposed) by inoculating the wounds with a variety of representative drug-resistant bacteria including methicillin-resistant S. aureus (MRSA), extended spectrum beta-lactamase-producing E. coli (ESBL-EC), multidrug-resistant Pseudomonas aeruginosa (MRPA), vancomycin-resistant Enterococcus (VRE), multidrug-resistant Acinetobacter baumannii (MRAB), multidrug-resistant Enterobacter (MRE), and multidrug-resistant Proteus mirabilis (MRPM). Irrigation and debridement were repeated until the wound culture became negative. The operating times required to eliminate pathogens in wounds were compared through survival analysis. Results. Compared with other groups (NS, castile soap, benzalkonium chloride, and bacitracin), the EDTA group required fewer debridement and irrigation operations to achieve pathogen eradication in all three models of wound infection. Conclusion. Irrigation with EDTA solution was more effective than the other irrigation fluids used in the treatment of wound infections caused by drug-resistant pathogens. Cite this article: Z. Deng, F. Liu, C. Li. Therapeutic effect of ethylenediaminetetraacetic acid irrigation solution against wound infection with drug-resistant bacteria in a rat model: an animal study. Bone Joint Res 2019;8:189–198. DOI: 10.1302/2046-3758.85.BJR-2018-0280.R3


Bone & Joint Research
Vol. 12, Issue 10 | Pages 654 - 656
16 Oct 2023
Makaram NS Simpson AHRW

Cite this article: Bone Joint Res 2023;12(10):654–656.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 644 - 649
1 May 2011
Yonekura Y Miyamoto H Shimazaki T Ando Y Noda I Mawatari M Hotokebuchi T

A silver-containing hydroxyapatite (Ag-HA) coating has been developed using thermal spraying technology. We evaluated the osteoconductivity of this coating on titanium (Ti) implants in rat tibiae in relation to bacterial infection in joint replacement. At 12 weeks, the mean affinity indices of bone formation of a Ti, an HA, a 3%Ag-HA and a 50%Ag-HA coating were 97.3%, 84.9%, 81.0% and 40.5%, respectively. The mean affinity indices of bone contact of these four coatings were 18.8%, 83.7%, 77.2% and 40.5%, respectively. The indices of bone formation and bone contact around the implant of the 3%Ag-HA coating were similar to those of the HA coating, and no significant differences were found between them (bone formation, p = 0.99; bone contact, p = 0.957). However, inhibition of bone formation was observed with the 50%Ag-HA coating. These results indicate that the 3%Ag-HA coating has low toxicity and good osteoconductivity, and that the effect of silver toxicity on osteoconductivity depends on the dose


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims

Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive.

Methods

A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 824 - 830
1 Sep 1997
Yasui N Sato M Ochi T Kimura T Kawahata H Kitamura Y Nomura S

We developed a rat model of limb lengthening to study the basic mechanism of distraction osteogenesis, using a small monolateral external fixator. In 11-week-old male rats we performed a subperiosteal osteotomy in the midshaft of the femur with distraction at 0.25 mm every 12 hours from seven days after operation. Radiological and histological examinations showed a growth zone of constant thickness in the middle of the lengthened segment, with formation of new bone at its proximal and distal ends. Osteogenic cells were arranged longitudinally along the tension vector showing the origin and the fate of individual cells in a single section. Typical endochondral bone formation was prominent in the early stage of distraction, but intramembraneous bone formation became the predominant mechanism of ossification at later stages. We also showed a third mechanism of ossification, ‘transchondroid bone formation’. Chondroid bone, a tissue intermediate between bone and cartilage, was formed directly by chondrocyte-like cells, with transition from fibrous tissue to bone occurring gradually and consecutively without capillary invasion. In situ hybridisation using digoxigenin-11-UTP-labelled complementary RNAs showed that the chondroid bone cells temporarily expressed type-II collagen mRNA. They did not show the classical morphological characteristics of chondrocytes, but were assumed to be young chondrocytes undergoing further differentiation into bone-forming cells. We found at least three different modes of ossification during bone lengthening by distraction osteogenesis. We believe that this is the first report of such a rat model, and have shown the validity of in situ hybridisation techniques for the study of the cellular and molecular mechanisms involved in distraction osteogenesis