This review describes the development of arthroscopy of the hip over the past 15 years with reference to patient assessment and selection, the technique, the conditions for which it is likely to prove useful, the contraindications and complications related to the procedure and, finally, to discuss possible developments in the future.
We report 17 patients (20 hips) in whom metal-on-metal resurfacing had been performed and who presented with various symptoms and a soft-tissue mass which we termed a pseudotumour. Each patient underwent plain radiography and in some, CT, MRI and ultrasonography were also performed. In addition, histological examination of available samples was undertaken. All the patients were women and their presentation was variable. The most common symptom was discomfort in the region of the hip. Other symptoms included spontaneous dislocation, nerve palsy, a noticeable mass or a rash. The common histological features were extensive necrosis and lymphocytic infiltration. To date, 13 of the 20 hips have required revision to a conventional hip replacement. Two are awaiting revision. We estimate that approximately 1% of patients who have a metal-on-metal resurfacing develop a pseudotumour within five years. The cause is unknown and is probably multifactorial. There may be a toxic reaction to an excess of particulate metal wear debris or a hypersensitivity reaction to a normal amount of metal debris. We are concerned that with time the incidence of these pseudotumours may increase. Further investigation is required to define their cause.
We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group. We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.
Hip resurfacing is being performed more frequently in the United Kingdom. The possible benefits include more accurate restoration of leg length, femoral offset and femoral anteversion than occurs after total hip arthroplasty (THA). We compared anteroposterior radiographs from 26 patients who had undergone hybrid THA (uncemented cup/cemented stem), with 28 who had undergone Birmingham Hip Resurfacing arthroplasty (BHR). We measured the femoral offset, femoral length, acetabular offset and acetabular height with reference to the normal contralateral hip. The data were analysed by paired There was a significant reduction in femoral offset (p = 0.0004) and increase in length (p = 0.001) in the BHR group. In the THA group, there was a significant reduction in acetabular offset (p = 0.0003), but femoral offset and overall hip length were restored accurately. We conclude that hip resurfacing does not restore hip mechanics as accurately as THA.