Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair.
Aims. The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances
This prospective multicentre study was undertaken
to determine whether the timing of the post-operative administration
of bisphosphonate affects
Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate
There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress.Aims
Methods
Fracture repair occurs by two broad mechanisms:
direct healing, and indirect healing with callus formation. The effects
of bisphosphonates on fracture repair have been assessed only in
models of indirect
We studied the effect of vitamin C on
Platelet-derived growth factor (PDGF) is known
to stimulate osteoblast or osteoprogenitor cell activity. We investigated
the effect of locally applied PDGF from poly-. d. ,l-lactide
(PDLLA)-coated implants on
We studied 56 patients with fractures of the tibial shaft in a multicentre prospective randomised trial of three methods of external fixation. Group I was treated with a fixator which was unlocked at 4 to 6 weeks to allow free axial compression (axial dynamisation) with weight-bearing. Group II was treated with a fixator that was similarly unlocked at 4 to 6 weeks but included a small silicone spring which on weight-bearing could be compressed by up to 2 mm. this spring returns to its original length on cessation of weight-bearing thus allowing cycles of motion of up to 2 mm. Group III had a spring fixator like group II, but it was unlocked from the start to allow cyclical micromovement as soon as weight-bearing began.
We measured the adenosine triphosphate (ATP) content of callus at various intervals during healing in 78 fractured tibiae in 10- to 12-week-old rabbits. The results, compared with the level in normal tissues, showed a high rate of energy metabolism in the early phase of
Using a simple method of quantifying
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
We have investigated whether assessment of blood flow to the proximal scaphoid can be used to predict nonunion in acute fractures of the scaphoid. We studied 32 fractures of the scaphoid one to two weeks after injury, by dynamic fat-suppressed T1-weighted gradient-echo MRI after the intravenous administration of gadopentetate dimeglumine (0.1 mmol/kg body-weight). Steepest slope values (SSV) and percentage enhancement values (%E) were calculated for the distal and proximal fragments and poles. All the fractures were treated by immobilisation in a cast, and union was assessed by CT at 12 weeks. Nonunion occurred in four fractures (12%), and there was no statistically significant difference between the proximal fragment SSV and %E values for the fractures which united and those with nonunion. The difference between the proximal pole SSV and %E values for the union and nonunion groups reached statistical significance (p <
0.05), but with higher enhancement parameters for the nonunion group. Our results suggest that poor proximal vascularity is not an important determinant of union in fractures of the scaphoid.
The uptake of 99mTc-MDP was studied in 73 patients after a tibial fracture. The image obtained five minutes after injection during a period between one and four weeks after fracture was found to be related to the incidence of non-union after six months. A ratio of 1.3 between the uptake at the fracture site and at normal bone adjacent to it predicted non-union in an individual patient with a sensitivity of about 70% and a specificity of 90%.
In 65 mature Wistar rats a Kirschner wire was introduced into the medullary cavity of each femur. A closed transverse mid-shaft fracture of one femur was produced by a three-point bending technique. Subsequently the mechanical characteristics of the healing fracture, including the torque and angle of twist required to take the callus to its yield point and to ultimate failure, were compared with those for the opposite femur of each rat. Controls were killed in groups at two, three, four, five and seven weeks. Test animals were given bovine growth hormone in a daily dose of five milligrams before being killed in groups at two, three and four weeks. A significant increase in torque index was found in the two-week group of test animals but not in subsequent groups. No evidence was found that growth hormone given alone could produce an overall shortening of the healing time in fresh fractures.