Advertisement for orthosearch.org.uk
Results 21 - 40 of 142
Results per page:
Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation. Methods. Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 10. 6. or 43.0 (SD 8.4) x 10. 5. colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 10. 6.   or 72.0 (SD 4.2) x 10. 5.   CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting. Results. Biofilms that formed on HA discs were thicker and larger than those on Ti discs, whereas those on Ag-HA discs were thinner and smaller than those on Ti discs. Viable bacterial counts in vivo revealed that Ag-HA combined with VCM was the most effective treatment. Conclusion. Ag-HA with VCM has a potential synergistic effect in reducing MRSA biofilm formation and can thus be useful for preventing and treating PJI. Cite this article:Bone Joint Res. 2020;9(5):211–218


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1527 - 1534
3 Nov 2020
Orita K Minoda Y Sugama R Ohta Y Ueyama H Takemura S Nakamura H

Aims. Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. Methods. A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy. Results. The total number of polyethylene wear particles obtained from the knees with E1 (mean 6.9, SD 4.0 × 10. 7. counts/knee) was greater than that obtained from those with ArCom (mean 2.2, SD 2.6 × 10. 7. counts/knee) (p = 0.001). The particle size (equivalent circle of diameter) from the knees with E1 was smaller (mean 0.5 μm, SD 0.1) than that of knees with ArCom (mean 1.5, SD 0.3 μm) (p = 0.001). The aspect ratio of particles from the knees with E1 (mean 1.3, SD 0.1) was smaller than that with ArCom (mean 1.4, SD 0.1) (p < 0.001 ). Conclusion. This is the first report of in vivo wear particle analysis of E1. E1 polyethylene did not reduce the number of in vivo polyethylene wear particles compared with ArCom in early clinical stage. Further careful follow-up of newly introduced E1 for TKA should be carried out. Cite this article: Bone Joint J 2020;102-B(11):1527–1534


Bone & Joint Research
Vol. 7, Issue 7 | Pages 476 - 484
1 Jul 2018
Panagiotopoulou VC Davda K Hothi HS Henckel J Cerquiglini A Goodier WD Skinner J Hart A Calder PR

Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods. A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results. Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion. This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A retrieval analysis of the Precice intramedullary limb lengthening system. Bone Joint Res 2018;7:476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1


Bone & Joint Research
Vol. 8, Issue 7 | Pages 313 - 322
1 Jul 2019
Law GW Wong YR Yew AK Choh ACT Koh JSB Howe TS

Objectives. The paradoxical migration of the femoral neck element (FNE) superomedially against gravity, with respect to the intramedullary component of the cephalomedullary device, is a poorly understood phenomenon increasingly seen in the management of pertrochanteric hip fractures with the intramedullary nail. The aim of this study was to investigate the role of bidirectional loading on the medial migration phenomenon, based on unique wear patterns seen on scanning electron microscopy of retrieved implants suggestive of FNE toggling. Methods. A total of 18 synthetic femurs (Sawbones, Vashon Island, Washington) with comminuted pertrochanteric fractures were divided into three groups (n = 6 per group). Fracture fixation was performed using the Proximal Femoral Nail Antirotation (PFNA) implant (Synthes, Oberdorf, Switzerland; n = 6). Group 1 was subjected to unidirectional compression loading (600 N), with an elastomer (70A durometer) replacing loose fracture fragments to simulate surrounding soft-tissue tensioning. Group 2 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading), also with the elastomer replacing loose fracture fragments. Group 3 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading) without the elastomer. All constructs were tested at 2 Hz for 5000 cycles or until cut-out occurred. The medial migration distance (MMD) was recorded at the end of the testing cycles. Results. The MMDs for Groups 1, 2, and 3 were 1.02 mm, 6.27 mm, and 5.44 mm respectively, with reliable reproduction of medial migration seen in all groups. Bidirectional loading groups showed significantly higher MMDs compared with the unidirectional loading group (p < 0.01). Conclusion. Our results demonstrate significant contributions of bidirectional cyclic loading to the medial migration phenomenon in cephalomedullary nail fixation of pertrochanteric hip fractures. Cite this article: G. W. Law, Y. R. Wong, A. K-S. Yew, A. C. T. Choh, J. S. B. Koh, T. S. Howe. Medial migration in cephalomedullary nail fixation of pertrochanteric hip fractures: A biomechanical analysis using a novel bidirectional cyclic loading model. Bone Joint Res 2019;8:313–322. DOI: 10.1302/2046-3758.87.BJR-2018-0271.R1


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives. Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods. The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results. Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions. The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 4 | Pages 732 - 750
1 Nov 1971
Clarke IC

1. The fibrillar networks of adult human articular cartilage, taken from femoral and acetabular specimens, have been systematically examined by scanning electron microscopy. The internal structures revealed by rupturing the tissue were compared with published findings from transmission electron microscope studies. 2. Though this technique demonstrated the internal fibrillar appearance of cartilage to a remarkable degree, it had several attendant limitations. On final drying, specimens generally exhibited shrinkage which varied within wide limits; this could have altered the internal architecture to some extent. In addition, the rupturing technique, which at the time of this investigation was the only satisfactory method of revealing the fibrillar cartilage structure, may well have had a great influence on the fibril orientations. 3. The fibrils revealed no characteristic collagen periodicity and were considerably thicker than those observed by transmission electron microscopy. It is suggested that a coating of mucin on the collagen fibrils might account for this. 4. At low magnifications the torn layers in the fractured surfaces extended radially from the calcified zone and turned obliquely at or near the articular surface to merge with the distinctly layered superficial zone, thus forming arcade-like structures. That these were not artefacts produced by the fracturing technique was shown by their similarity to the classical arcade pattern of light microscopy. However, the factor which governed the direction of these planes of weakness, be it collagen, mucopolysaccharides or cells, could not be satisfactorily determined. 5. At higher magnifications only three regions of distinct fibrillar organisation could be identified: 1) a surface layer consisting of a random fibrillar network; 2) a superficial zone composed of layers of fibrillar network, intersecting and overlapping in planes parallel to the surface; and 3) elsewhere below the superficial zone a network of virtually random fibrils which extended to the calcified region with apparently little variation in thickness or density. There was little variation from this pattern even in aged fibrillated specimens. 6. At the lower magnification range the scanning electron microscope has revealed the arcade pattern described by light microscopy, while at the higher magnifications the fibrillar organisation as seen by scanning electron microscopy correlated well with the concepts developed by transmission electron microscopy, that is, a random network of fibrils overlaid at the articular surface by a membrane-like system of bundled fibrils. 7. A possible role in the transmission of joint forces is outlined for the above fibrillar organisation


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 604 - 611
1 May 2009
Reay E Wu J Holland J Deehan D

We describe a cohort of patients with a high rate of mid-term failure following Kinemax Plus total knee replacement inserted between 1998 and 2001. This implant has been recorded as having a survival rate of 96% at ten years. However, in our series the survival rate was 75% at nine years. This was also significantly lower than that of subsequent consecutive series of PFC Sigma knee replacements performed by the same surgeon. No differences were found in the clinical and radiological parameters between the two groups. At revision the most striking finding was polyethylene wear. An independent analysis of the polyethylene components was therefore undertaken. Scanning electron microscopy revealed type 2 fusion defects in the ultra-high molecular weight polyethylene (UHMWPE), which indicated incomplete boundary fusion. Other abnormalities consistent with weak UHMWPE particle interface strength were present in both the explanted inserts and in unused inserts from the same period. We consider that these type 2 fusion defects are the cause of the early failure of the Kinemax implants. This may represent a manufacturing defect resulting in a form of programmed polyethylene failure


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives. There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method . was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). Results. Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. . Conclusions. Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine


Bone & Joint Research
Vol. 5, Issue 6 | Pages 218 - 224
1 Jun 2016
Cheng N Guo A Cui Y

Objectives. Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods. Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results. Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after collagenase injection. Conclusion. Our results demonstrate that intra-articular injection of Torin 1 reduces degeneration of articular cartilage in collagenase-induced OA, at least partially by autophagy activation, suggesting a novel therapeutic approach for preventing cartilage degeneration and treating OA. Cite this article: N-T. Cheng, A. Guo, Y-P. Cui. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model. Bone Joint Res 2016;5:218–224. DOI: 10.1302/2046-3758.56.BJR-2015-0001


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated. We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1036 - 1041
1 Aug 2007
Knahr K Pospischill M Köttig P Schneider W Plenk H

Two Durasul highly crosslinked polyethylene liners were exchanged during revision surgery four and five years after implantation, respectively. The retrieved liners were evaluated macroscopically and surface analysis was performed using optical and electron microscopy. A sample of each liner was used to determine the oxidation of the material by Fourier transform infrared spectroscopy. Samples of the capsule were examined histologically. The annual wear rate was found to be 0.010 and 0.015 mm/year, respectively. Surface analysis showed very little loss of material caused by wear. Histological evaluation revealed a continuous neosynovial lining with single multinucleated foreign-body giant cells. Our findings showed no unexpected patterns of wear on the articulating surfaces up to five years after implantation and no obvious failure of material


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 760 - 768
1 Jun 2011
ten Broeke RHM Alves A Baumann A Arts JJC Geesink RGT

Four uncemented Symax hip stems were extracted at three weeks and nine, 13 and 32 months, respectively, for reasons other than loosening. The reasons for implant removal were infection in two cases, recurrent dislocation in one and acetabular fracture in one. They were analysed to assess the effect and behaviour of an electrochemically deposited, completely resorbable biomimetic BONIT-hydroxyapatite (HA) coating (proximal part) and a DOTIZE surface treatment (distal part) using qualitative histology, quantitative histomorphometry and scanning electron microscopy (SEM). Early and direct bone-implant bonding with signs of active remodelling of bone and the HA coating were demonstrated by histology and SEM. No loose BONIT-HA particles or delamination of the coating were observed, and there was no inflammation or fibrous interposition at the interface. Histomorphometry showed bone-implant contact varying between 26.5% at three weeks and 83.5% at 13 months at the HA-coated implant surface. The bone density in the area of investigation was between 24.6% at three weeks and 41.1% at 32 months. The DOTIZE surface treatment of the distal part of the stem completely prevented tissue and bone apposition in all cases, thereby optimising proximal stress transfer. The overall features of this implant, in terms of geometry and surface texture, suggest a mechanically stable design with a highly active biomimetic coating, resulting in rapid and extensive osseo-integration, exclusively in the metaphyseal part of the stem. Early remodelling of the HA coating does not seem to have a detrimental effect on short-term bone-implant coupling. There were no adverse effects identified from either the BONIT-HA coating or the DOTIZE surface treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1306 - 1311
1 Sep 2010
Patten EW Atwood SA Van Citters DW Jewett BA Pruitt LA Ries MD

Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 μm to 4.3 μm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage. This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 824 - 827
1 Jun 2011
Wanner S Gstöttner M Meirer R Hausdorfer J Fille M Stöckl B

Biofilm-associated infections in wounds or on implants are difficult to treat. Eradication of the bacteria is nearly always impossible, despite the use of specific antibiotics. The bactericidal effects of high-energy extracorporeal shock waves on Staphylococcus aureus have been reported, but the effect of low-energy shock waves on staphylococci and staphylococcal biofilms has not been investigated. In this study, biofilms grown on stainless steel washers were examined by electron microscopy. We tested ten experimental groups with Staph. aureus-coated washers and eight groups with Staph. epidermidis. The biofilm-cultured washers were exposed to low-energy shock waves at 0.16 mJ/mm. 2. for 500 impulses. The washers were then treated with cefuroxime, rifampicin and fosfomycin, both alone and in combination. All tests were carried out in triplicate. Viable cells were counted to determine the bactericidal effect. The control groups of Staph. aureus and Staph. epidermidis revealed a cell count of 6 × 10. 8. colony-forming units/ml. Complete eradication was achieved using the combination of antibiotic therapy (single antibiotic in Staph. aureus, a combination in Staph. epidermidis) and shock wave application (p < 0.01). We conclude that shock waves combined with antibiotics could be tested in an in vitro model of infection


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 1 | Pages 60 - 67
1 Jan 1994
Shanbhag A Jacobs J Glant T Gilbert J Black J Galante J

Interfacial membranes collected at revision from 11 failed uncemented Ti-alloy total hip replacements were examined. Particles in the membranes were characterised by electron microscopy, microchemical spectroscopy and particle size analysis. Most were polyethylene and had a mean size of 0.53 micron +/- 0.3. They were similar to the particles seen in the base resin used in the manufacture of the acetabular implants. Relatively few titanium particles were seen. Fragments of bone, stainless steel and silicate were found in small amounts. Most of the polyethylene particles were too small to be seen by light microscopy. Electron microscopy and spectroscopic techniques are required to provide an accurate description of this debris


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 1 | Pages 106 - 110
1 Jan 1986
Ghadially F Wedge J Lalonde J

A longitudinal incision resembling a bucket-handle tear was made in the menisci of 8 rabbits, 6 dogs, 11 pigs and 12 sheep. In some of the animals of each species the cut was repaired by suturing, and in others it was not. Gross inspection, as well as examination by light and electron microscopy, showed that no healing had occurred after six months in the sutured or the unsutured wounds and that the meniscus was incapable of significant intrinsic repair. In a second experiment longitudinal, transverse and T-shaped cuts were made in the menisci of 12 sheep, and a flap of synovium was sutured into the wound. Three months later there was clear evidence of healing by the formation of cartilaginous tissue. Examination by light and electron microscopy showed that the newly formed repair tissue, possibly derived by metaplasia from the synovium, had a morphology intermediate between hyaline cartilage and fibrocartilage. Synovial implantation may therefore be considered as an alternative to meniscectomy in the management of the torn meniscus


The Journal of Bone & Joint Surgery British Volume
Vol. 52-B, Issue 3 | Pages 554 - 563
1 Aug 1970
Muir H Bullough P Maroudas A

1. Serial slices of articular cartilage obtained at necropsy from apparently normal femoral condyles of individuals between the ages of twenty-six and sixty were examined chemically, by electron microscopy and for permeability. 2. The most superficial layer was shown by chemical analysis and electron microscopy to have the highest collagen content, which fell sharply with distance from the articular surface. On the other hand the glycosaminoglycan content was very low in the superficial layers but increased with depth. This variation was found in all specimens tested but the absolute levels of collagen and of glycosaminoglycans were widely different. There was no correlation of chemical composition with age. 3. Collagen fibrils in the superficial layer were of much smaller diameter than in the deeper zones. 4. Hydraulic permeability was shown to depend more on glycosaminoglycan than on collagen content, although it varied inversely with both these factors. 5. The results obtained demonstrate clearly the close relation between the physical properties of cartilage and its chemical composition


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 3 | Pages 375 - 382
1 Aug 1978
Dowling J Atkinson Dowson D Charnley J

In laboratory tests, the ultra-high molecular weight polyethylene used for the acetabular cups of Charnley hip prostheses has a very low wear rate against steel. In the body radiographic measurements indicate that the polyethylene wears more rapidly. In order to investigate this higher wear rate, the sockets of acetabular cups removed at post-mortem have been examined using optical and electron microscopy. It has been shown that a socket wears predominantly on its superior part and that this is a direct consequence of the orientation of the cup in the body and the direction of loading of the hip. In the worn region the femoral head in effect bores out a new socket for itself, a process which is visible with the naked eye after approximately eight years. Electron microscopy shows that the predominant wear mechanism is adhesion, but after about eight years the appearance of surface cracks suggests that surface fatigue is taking place in addition to this. Laboratory wear tests have shown that pure surface fatigue is not sufficient to account for the high clinical wear rate. Other deformation processes are suggested and discussed with regard to the higher clinical wear rate


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 2 | Pages 352 - 360
1 May 1974
Bard DR Dickens MJ Edwards J Smith AU

1. Methods for culturing cells isolated from slices of arthritic human or normal mammalian cancellous bone are described. 2. The capacity of the cultured cells to take up and hydroxylate labelled proline has been investigated. 3. Sections of the partially decalcified bone and of the isolated cells have been examined by transmission electron microscopy. 4. The possible significance of the results and observations are discussed. We are deeply grateful to Dame Janet Vaughan, who very kindly read this manuscript and made several valuable suggestions and criticisms. We are much obliged to Dr Sylvia Fitton-Jackson for her advice on the techniques of tissue culture and for giving us the composition of her chemically defined medium. Dr Palfrey kindly allowed one of us, M. J. Dickens, to learn transmission electron microscopy in his department at St Thomas's Hospital Medical School under the expert tuition of Mr G. Maxwell. Mr R. Hockhan and Mr M. Hepburn of the University of Surrey Structural Studies Unit helpfully instructed in the operation of the transmission electron microscope. Our special thanks are due to Mr E. P. Morris for his competent and enthusiastic technical assistance


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 144 - 150
1 Jan 1998
Hunziker EB Kapfinger E Müller ME

Lesions within the articular cartilage layer of synovial joints do not heal spontaneously. Some repair cells may appear, but their failure to become established may be related to problems of adhesion to proteoglycan-rich surfaces. We therefore investigated whether controlled enzymatic degradation of surface proteoglycan molecules to a depth of about 1 μm, using chondroitinase ABC, would improve coverage by repair cells. We created superficial lesions (1.0 × 0.2 × 5 mm) in the articular cartilage of mature rabbit knees and treated the surfaces with 1 U/ml of chondroitinase ABC for four minutes. The defects were studied by histomorphometry and electron microscopy at one, three and six months. At one month, untreated lesions were covered to a mean extent of 28% by repair cells; this was enhanced to a mean of 53% after enzyme treatment. By three months, the mean coverage of both control and chondroitinase-ABC-treated defects had diminished dramatically to 0.2% and 13%, respectively, but at six months both untreated and treated lesions had a similar coverage of about 30%, not significantly different from that achieved in untreated knees at one month. These findings suggest that, with time, chondrocytes near the surface of the defect may compensate for the loss of proteoglycans produced by enzyme treatment, thereby restoring the inhibitory properties of the matrix as regards cell adhesion. This supposition was confirmed by electron microscopy. Our results have an important bearing on attempts made to induce healing responses by transplanting chondrogenic cells or by applying growth factors