A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.Aims
Methods
This study aims to determine the proportion of patients with end-stage knee osteoarthritis (OA) possibly suitable for partial (PKA) or combined partial knee arthroplasty (CPKA) according to patterns of full-thickness cartilage loss and anterior cruciate ligament (ACL) status. A cross-sectional analysis of 300 consecutive patients (mean age 69 years (SD 9.5, 44 to 91), mean body mass index (BMI) 30.6 (SD 5.5, 20 to 53), 178 female (59.3%)) undergoing total knee arthroplasty (TKA) for Kellgren-Lawrence grade ≥ 3 knee OA was conducted. The point of maximal tibial bone loss on preoperative lateral radiographs was determined as a percentage of the tibial diameter. At surgery, Lachman’s test and ACL status were recorded. The presence of full-thickness cartilage loss within 16 articular surface regions (two patella, eight femoral, six tibial) was recorded.Aims
Methods
Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient.Aims
Methods
Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.Aims
Methods
Between 15% and 20% of patients remain dissatisfied following total knee arthroplasty (TKA). The SAIPH knee system (MatOrtho, Surrey, United Kingdom) is a medial ball and socket TKA that has been designed to replicate native knee kinematics in order to maximize the range of movement, stability, and function. This system is being progressively introduced in a stepwise fashion, with this study reporting the mid-term clinical and radiological outcomes. A retrospective review was undertaken of the first 100 consecutive patients with five-year follow-up following SAIPH TKA performed by the senior authors. The data that were collected included the demographics of the patients, clinical findings, the rate of intraoperative ligamentous release, patient-reported outcome measures (PROMS), radiological assessment, complications, and all-cause revision. Revision data were cross-checked with a national registry.Aims
Patients and Methods
Aims
Patients and Methods
The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA). This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (Aims
Patients and Methods
To compare the gait of unicompartmental knee arthroplasty (UKA)
and total knee arthroplasty (TKA) patients with healthy controls,
using a machine-learning approach. 145 participants (121 healthy controls, 12 patients with cruciate-retaining
TKA, and 12 with mobile-bearing medial UKA) were recruited. The
TKA and UKA patients were a minimum of 12 months post-operative,
and matched for pattern and severity of arthrosis, age, and body
mass index. Participants walked on an instrumented treadmill until their
maximum walking speed was reached. Temporospatial gait parameters,
and vertical ground reaction force data, were captured at each speed.
Oxford knee scores (OKS) were also collected. An ensemble of trees
algorithm was used to analyse the data: 27 gait variables were used
to train classification trees for each speed, with a binary output
prediction of whether these variables were derived from a UKA or
TKA patient. Healthy control gait data was then tested by the decision
trees at each speed and a final classification (UKA or TKA) reached
for each subject in a majority voting manner over all gait cycles
and speeds. Top walking speed was also recorded.Aims
Patients and Methods
We have developed a new tensor for total knee replacements which is designed to assist with soft-tissue balancing throughout the full range of movement with a reduced patellofemoral joint. Using this tensor in 40 patients with osteoarthritis we compared the intra-operative joint gap in cruciate-retaining and posterior-stabilised total knee replacements at 0°, 10°, 45°, 90° and 135° of flexion, with the patella both everted and reduced. While the measurement of the joint gap with a reduced patella in posterior-stabilised knees increased from extension to flexion, it remained constant for cruciate-retaining joints throughout a full range of movement. The joint gaps at deep knee flexion were significantly smaller for both types of prosthetic knee when the patellofemoral joint was reduced (p <
0.05).
Instability is a common indication for early
revision after both primary and revision total knee arthroplasty
(TKA), accounting for up to 20% in the literature. The number of
TKAs performed annually continues to climb exponentially, thus having
an effective algorithm for treatment is essential. This relies on
a thorough pre- and intra-operative assessment of the patient. The
underlying cause of the instability must be identified initially
and subsequently, the surgeon must be able to balance the flexion
and extension gaps and be comfortable using a variety of constrained
implants. This review describes the assessment of the unstable TKA, and
the authors’ preferred form of treatment for these difficult cases
where the source of instability is often multifactorial. Cite this article:
The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.Objectives
Methods
Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions.Objectives
Methods
Our aims were to map the tibial footprint of the posterior cruciate ligament (PCL) using MRI in patients undergoing PCL-preserving total knee replacement, and to document the disruption of this footprint as a result of the tibial cut. In 26 consecutive patients plain radiography and MRI of the knee were performed pre-operatively, and plain radiography post-operatively. The lower margin of the PCL footprint was located a mean of 1 mm (−10 to 8) above the upper aspect of the fibular head. The mean surface area was 83 mm2 (49 to 142). One-third of patients (8 of 22) had tibial cuts made below the lowest aspect of the PCL footprint (complete removal) and one-third (9 of 22) had cuts extending into the footprint (partial removal). The remaining patients (5 of 22) had footprints unaffected by the cuts, keeping them intact. Our study highlights the wide variation in the location of the tibial PCL footprint when referenced against the fibula. Proximal tibial cuts using conventional jigs resulted in the removal of a significant portion, if not all of the PCL footprint in most of the patients in our study. Our findings suggest that when performing PCL-retaining total knee replacement the tibial attachment of the PCL is often removed.
Fractures around total knee arthroplasties pose
a significant surgical challenge. Most can be managed with osteosynthesis
and salvage of the replacement. The techniques of fixation of these
fractures and revision surgery have evolved and so has the assessment
of outcome. This specialty update summarises the current evidence
for the classification, methods of fixation, revision surgery and
outcomes of the management of periprosthetic fractures associated
with total knee arthroplasty. Cite this article:
The primary aim of this study was to assess whether patient satisfaction
one year after total knee arthroplasty (TKA) changed with longer
follow-up. The secondary aims were to identify predictors of satisfaction
at one year, persistence of patient dissatisfaction, and late onset
dissatisfaction in patients that were originally satisfied at one year. A retrospective cohort consisting of 1369 patients undergoing
a primary TKA for osteoarthritis that had not undergone revision
were identified from an established arthroplasty database. Patient
demographics, comorbidities, Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) scores, and Short Form 12 (SF-12) questionnaire
scores were collected preoperatively, and one and five years postoperatively.
In addition, patient satisfaction was assessed at one and five years
postoperatively. Logistic regression analysis was used to identify
independent predictors of satisfaction at one and five years.Aims
Patients and Methods
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.
The aim of this study was to compare the maximum
laxity conferred by the cruciate-retaining (CR) and posterior-stabilised
(PS) Triathlon single-radius total knee arthroplasty (TKA) for anterior
drawer, varus–valgus opening and rotation in eight cadaver knees
through a defined arc of flexion (0º to 110º). The null hypothesis
was that the limits of laxity of CR- and PS-TKAs are not significantly
different. The investigation was undertaken in eight loaded cadaver knees
undergoing subjective stress testing using a measurement rig. Firstly
the native knee was tested prior to preparation for CR-TKA and subsequently
for PS-TKA implantation. Surgical navigation was used to track maximal
displacements/rotations at 0º, 30º, 60º, 90º and 110° of flexion.
Mixed-effects modelling was used to define the behaviour of the
TKAs. The laxity measured for the CR- and PS-TKAs revealed no statistically
significant differences over the studied flexion arc for the two
versions of TKA. Compared with the native knee both TKAs exhibited
slightly increased anterior drawer and decreased varus-valgus and
internal-external roational laxities. We believe further study is required
to define the clinical states for which the additional constraint
offered by a PS-TKA implant may be beneficial. Cite this article:
This prospective study describes the outcome of the first 1000 phase 3 Oxford medial unicompartmental knee replacements (UKRs) implanted using a minimally invasive surgical approach for the recommended indications by two surgeons and followed up independently. The mean follow-up was 5.6 years (1 to 11) with 547 knees having a minimum follow-up of five years. At five years their mean Oxford knee score was 41.3 ( The incidence of implant-related re-operations was 2.9%; of these 29 re-operations two were revisions requiring revision knee replacement components with stems and wedges, 17 were conversions to a primary total knee replacement, six were open reductions for dislocation of the bearing, three were secondary lateral UKRs and one was revision of a tibial component. The most common reason for further surgical intervention was progression of arthritis in the lateral compartment (0.9%), followed by dislocation of the bearing (0.6%) and revision for unexplained pain (0.6%). If all implant-related re-operations are considered failures, the ten-year survival rate was 96% (95% confidence interval, 92.5 to 99.5). If only revisions requiring revision components are considered failures the ten-year survival rate is 99.8% (confidence interval 99 to 100). This is the largest published series of UKRs implanted through a minimally invasive surgical approach and with ten-year survival data. The survival rates are similar to those obtained with a standard open approach whereas the function is better. This demonstrates the effectiveness and safety of a minimally invasive surgical approach for implanting the Oxford UKR.
After obtaining informed consent, 80 patients were randomised to undergo a navigated or conventional total knee replacement. All received a cemented, unconstrained, cruciate-retaining implant with a rotating platform. Full-length standing and lateral radiographs and CT scans of the hip, knee and ankle joint were carried out five to seven days after operation. No notable differences were found between computer-assisted navigation and conventional implantation techniques as regards the rotational alignment of the femoral or tibial components. Although the deviation from the transepicondylar axis was relatively low, there was a considerable range of deviation for the tibial rotational alignment. There was no statistically significant difference regarding the occurrence pattern of outliers in mechanical malalignment but the number of outliers was reduced in the navigated group.