Advertisement for orthosearch.org.uk
Results 21 - 40 of 2443
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 922 - 928
1 Aug 2022
Png ME Petrou S Fernandez MA Achten J Parsons N McGibbon A Gould J Griffin XL Costa ML

Aims. The aim of this study was to compare the cost-effectiveness of cemented hemiarthroplasty (HA) versus hydroxyapatite-coated uncemented HA for the treatment of displaced intracapsular hip fractures in older adults. Methods. A within-trial economic evaluation was conducted based on data collected from the World Hip Trauma Evaluation 5 (WHiTE 5) multicentre randomized controlled trial in the UK. Resource use was measured over 12 months post-randomization using trial case report forms and participant-completed questionnaires. Cost-effectiveness was reported in terms of incremental cost per quality-adjusted life year (QALY) gained from the NHS and personal social service perspective. Methodological uncertainty was addressed using sensitivity analysis, while decision uncertainty was represented graphically using confidence ellipses and cost-effectiveness acceptability curves. Results. The base-case analysis showed that cemented implants were cost-saving (mean cost difference -£961 (95% confidence interval (CI) -£2,292 to £370)) and increased QALYs (mean QALY difference 0.010 (95% CI 0.002 to 0.017)) when compared to uncemented implants. The probability of the cemented implant being cost-effective approximated between 95% and 97% at alternative cost-effectiveness thresholds held by decision-makers, and its net monetary benefit was positive. The findings remained robust against all the pre-planned sensitivity analyses. Conclusion. This study shows that cemented HA is cost-effective compared with hydroxyapatite-coated uncemented HA in older adults with displaced intracapsular hip fractures. Cite this article: Bone Joint J 2022;104-B(8):922–928


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1115 - 1121
1 Aug 2007
Messick KJ Miller MA Damron LA Race A Clarke MT Mann KA

The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces. The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired t-test, p = 0.187). The linear pore fractions at the interfaces were also similar for the two techniques. The pore number-density was much higher for the hand-mixed cement (paired t-test, p = 0.0013). The strength of the cement-stem interface was greater with the hand-mixed cement (paired t-test, p = 0.0005), while the strength of the cement-bone interface was not affected by the conditions of mixing (paired t-test, p = 0.275). The reduction in porosity with vacuum mixing did not affect the porosity of the mantle, but the distribution of the porosity can be affected by the technique of mixing used


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 67 - 73
1 Mar 2024
Laboudie P Hallé A Anract P Hamadouche M

Aims. The aim of this retrospective study was to assess the incidence of early periprosthetic femoral fracture (PFF) associated with Charnley-Kerboull (CK) femoral components cemented according to the ‘French paradox’ principles through the Hueter anterior approach (HAA) in patients older than 70 years. Methods. From a prospectively collected database, all short CK femoral components implanted consecutively from January 2018 to May 2022 through the HAA in patients older than 70 years were included. Exclusion criteria were age below 70 years, use of cementless femoral component, and approaches other than the HAA. A total of 416 short CK prostheses used by 25 surgeons with various levels of experience were included. All patients had a minimum of one-year follow-up, with a mean of 2.6 years (SD 1.1). The mean age was 77.4 years (70 to 95) and the mean BMI was 25.3 kg/m. 2. (18.4 to 43). Femoral anatomy was classified according to Dorr. The measured parameters included canal flare index, morphological cortical index, canal-calcar ratio, ilium-ischial ratio, and anterior superior iliac spine to greater trochanter (GT) distance. Results. Among the 416 THAs, two PFFs (0.48% (95% confidence interval 0.13 to 1.74)) were observed, including one Vancouver type B2 fracture 24 days postoperatively and one intraoperative Vancouver type B1 fracture. Valgus malalignment and higher canal bone ratio were found to be associated with PFF. Conclusion. This study demonstrated that short CK femoral components cemented according to the French paradox were associated with a low rate of early PFF (0.48%) in patients aged over 70 years. Longer follow-up is warranted to further evaluate the rate of fracture that may occur during the bone remodelling process and with time. Cite this article: Bone Joint J 2024;106-B(3 Supple A):67–73


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 165 - 170
1 Jun 2021
Larson DJ Rosenberg JH Lawlor MA Garvin KL Hartman CW Lyden E Konigsberg BS

Aims. Stemmed tibial components are frequently used in revision total knee arthroplasty (TKA). The purpose of this study was to evaluate patient satisfaction, overall pain, and diaphyseal tibial pain in patients who underwent revision TKA with cemented or uncemented stemmed tibial components. Methods. This is a retrospective cohort study involving 110 patients with revision TKA with cemented versus uncemented stemmed tibial components. Patients who underwent revision TKA with stemmed tibial components over a 15-year period at a single institution with at least two-year follow-up were assessed. Pain was evaluated through postal surveys. There were 63 patients with cemented tibial stems and 47 with uncemented stems. Radiographs and Knee Society Scores were used to evaluate for objective findings associated with pain or patient dissatisfaction. Postal surveys were analyzed using Fisher’s exact test and the independent-samples t-test. Logistic regression was used to adjust for age, sex, and preoperative bone loss. Results. No statistically significant differences in stem length, operative side, or indications for revision were found between the two cohorts. Tibial pain at the end of the stem was present in 25.3% (16/63) of cemented stems and 25.5% (12/47) of uncemented stems (p = 1.000); 74.6% (47/63) of cemented patients and 78.7% (37/47) of uncemented patients were satisfied following revision TKA (p = 0.657). Conclusion. There were no differences in patient satisfaction, overall pain, and diaphyseal tibial pain in cemented and uncemented stemmed tibial components in revision TKA. Patient factors, rather than implant selection and surgical technique, likely play a large role in the presence of postoperative pain. Stemmed tibial components have been shown to be a possible source of pain in revision TKA. There is no difference in patient satisfaction or postoperative pain with cemented or uncemented stemmed tibial components in revision TKA. Cite this article: Bone Joint J 2021;103-B(6 Supple A):165–170


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 481 - 486
1 May 2023
Scott CEH Jain S Moran M Haddad FS

The Unified Classification System (UCS), or Vancouver system, is a validated and widely used classification system to guide the management of periprosthetic femoral fractures. It suggests that well-fixed stems (type B1) can be treated with fixation but that loose stems (types B2 and B3) should be revised. Determining whether a stem is loose can be difficult and some authors have questioned how to apply this classification system to polished taper slip stems which are, by definition, loose within their cement mantle. Recent evidence has challenged the common perception that revision surgery is preferable to fixation surgery for UCS-B periprosthetic fractures around cemented polished taper slip stems. Indications for fixation include an anatomically reducible fracture and cement mantle, a well-fixed femoral bone-cement interface, and a well-functioning acetabular component. However, not all type B fractures can or should be managed with fixation due to the risk of early failure. This annotation details specific fracture patterns that should not be managed with fixation alone. Cite this article: Bone Joint J 2023;105-B(5):481–486


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 144 - 150
1 Feb 2024
Lynch Wong M Robinson M Bryce L Cassidy R Lamb JN Diamond O Beverland D

Aims. The aim of this study was to determine both the incidence of, and the reoperation rate for, postoperative periprosthetic femoral fracture (POPFF) after total hip arthroplasty (THA) with either a collared cementless (CC) femoral component or a cemented polished taper-slip (PTS) femoral component. Methods. We performed a retrospective review of a consecutive series of 11,018 THAs over a ten-year period. All POPFFs were identified using regional radiograph archiving and electronic care systems. Results. A total of 11,018 THAs were implanted: 4,952 CC femoral components and 6,066 cemented PTS femoral components. Between groups, age, sex, and BMI did not differ. Overall, 91 patients (0.8%) sustained a POPFF. For all patients with a POPFF, 16.5% (15/91) were managed conservatively, 67.0% (61/91) underwent open reduction and internal fixation (ORIF), and 16.5% (15/91) underwent revision. The CC group had a lower POPFF rate compared to the PTS group (0.7% (36/4,952) vs 0.9% (55/6,066); p = 0.345). Fewer POPFFs in the CC group required surgery (0.4% (22/4,952) vs 0.9% (54/6,066); p = 0.005). Fewer POPFFs required surgery in males with a CC than males with a PTS (0.3% (7/2,121) vs 1.3% (36/2,674); p < 0.001). Conclusion. Male patients with a PTS femoral component were five times more likely to have a reoperation for POPFF. Female patients had the same incidence of reoperation with either component type. Of those having a reoperation, 80.3% (61/76) had an ORIF, which could greatly mask the size of this problem in many registries. Cite this article: Bone Joint J 2024;106-B(2):144–150


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 297 - 301
1 Feb 2022
Jamshidi K Bagherifard A Mohaghegh MR Mirzaei A

Aims. Giant cell tumours (GCTs) of the proximal femur are rare, and there is no consensus about the best method of filling the defect left by curettage. In this study, we compared the outcome of using a fibular strut allograft and bone cement to reconstruct the bone defect after extended curettage of a GCT of the proximal femur. Methods. In a retrospective study, we reviewed 26 patients with a GCT of the proximal femur in whom the bone defect had been filled with either a fibular strut allograft (n = 12) or bone cement (n = 14). Their demographic details and oncological and nononcological complications were retrieved from their medical records. Limb function was assessed using the Musculoskeletal Tumor Society (MSTS) score. Results. Mean follow-up was 116 months (SD 59.2; 48 to 240) for the fibular strut allograft group and 113 months (SD 43.7; 60 to 192) for the bone cement group (p = 0.391). The rate of recurrence was not significantly different between the two groups (25% vs 21.4%). The rate of nononcological complications was 16.7% in the strut allograft group and 42.8% in the bone cement group. Degenerative joint disease was the most frequent nononcological complication in the cement group. The mean MSTS score of the patients was 92.4% (SD 11.5%; 73.3% to 100.0%) in the fibular strut allograft group and 74.2% (SD 10.5%; 66.7% to 96.7%) in the bone cement group (p < 0.001). Conclusion. Given the similar rate of recurrence and a lower rate of nononcological complications, fibular strut grafting could be recommended as a method of reconstructing the bone defect left by curettage of a GCT of the proximal femur. Cite this article: Bone Joint J 2022;104-B(2):297–301


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 808 - 816
1 Aug 2024
Hall AJ Cullinan R Alozie G Chopra S Greig L Clarke J Riches PE Walmsley P Ohly NE Holloway N

Aims. Total knee arthroplasty (TKA) with a highly congruent condylar-stabilized (CS) articulation may be advantageous due to increased stability versus cruciate-retaining (CR) designs, while mitigating the limitations of a posterior-stabilized construct. The aim was to assess ten-year implant survival and functional outcomes of a cemented single-radius TKA with a CS insert, performed without posterior cruciate ligament sacrifice. Methods. This retrospective cohort study included consecutive patients undergoing TKA at a specialist centre in the UK between November 2010 and December 2012. Data were collected using a bespoke electronic database and cross-referenced with national arthroplasty audit data, with variables including: preoperative characteristics, intraoperative factors, complications, and mortality status. Patient-reported outcome measures (PROMs) were collected by a specialist research team at ten years post-surgery. There were 536 TKAs, of which 308/536 (57.5%) were in female patients. The mean age was 69.0 years (95% CI 45.0 to 88.0), the mean BMI was 32.2 kg/m. 2. (95% CI 18.9 to 50.2), and 387/536 (72.2%) survived to ten years. There were four revisions (0.7%): two deep infections (requiring debridement and implant retention), one aseptic loosening, and one haemosiderosis. Results. Kaplan-Meier analysis demonstrated no difference in implant survival according to sex, age, or obesity status. Ten-year PROMs were available for 196/387 (50.6%) surviving patients and were excellent: mean Oxford Knee Score 34.4 (95% CI 32.7 to 36.1); mean Forgotten Joint Score (FJS) 51.2 (95% CI 16.1 to 86.3); mean EuroQol five-dimension five-level questionnaire score 69.9 (95% CI 46.8 to 93.0); 141/196 (71.9%) achieved the 22-point FJS patient-acceptable symptom state (PASS); and 156/196 (79.6%) were “very satisfied or satisfied”. Conclusion. This is the only large study reporting ten-year implant survival and functional outcomes of TKA using a cemented single-radius design and with a CS tibial bearing construct. The findings of excellent implant survival, safety, and functional outcomes indicate that this combination is a safe and effective option in routine TKA. Further investigation of this single-radius design TKA with CS tibial bearings with well-matched patient study groups will allow further insight into the performance of these implants. Cite this article: Bone Joint J 2024;106-B(8):808–816


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims. The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). Methods. At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays. Results. A total of 114 explanted fixed-bearing TKAs were examined. This included 76 used with contemporary PE inserts which were compared with 15 used with older generation PEs. The Attune and NexGen (central locking) trays were found to have significantly less cement cover than Triathlon and PFC trays (peripheral locking group) (p = 0.001). The median planicity values of the PE inserts used with central locking trays were significantly greater than of those with peripheral locking inserts (205 vs 85 microns; p < 0.001). Attune and NexGen inserts had a characteristic pattern of backside deformation, with the outer edges of the PE deviating inferiorly, leaving the PE margins as the primary areas of articulation. Conclusion. Explanted TKAs with central locking mechanisms were significantly more likely to debond from the cement mantle. The PE inserts of these designs showed characteristic patterns of deformation, which appeared to relate to the manufacturing process and may be exacerbated in vivo. This pattern of deformation was associated with PE wear occurring at the outer edges of the articulation, potentially increasing the frictional torque generated at this interface. Cite this article: Bone Joint J 2021;103-B(12):1791–1801


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 31 - 36
1 Jan 2009
de Jong PT de Man FHR Haverkamp D Marti RK

We report the long-term outcome of a modified second-generation cementing technique for fixation of the acetabular component of total hip replacement. An earlier report has shown the superiority of this technique assessed by improved survival compared with first-generation cementing. The acetabular preparation involved reaming only to the subchondral plate, followed by impaction of the bone in the anchorage holes. Between 1978 and 1993, 287 total hip replacements were undertaken in 244 patients with a mean age of 65.3 years (21 to 90) using a hemispherical Weber acetabular component with this modified technique for cementing and a cemented femoral component. The survival with acetabular revision for aseptic loosening as the endpoint was 99.1% (95% confidence interval 97.9 to 100 after ten years and 85.5% (95% confidence interval 74.7 to 96.2) at 20 years. Apart from contributing to a long-lasting fixation of the component, this technique also preserved bone, facilitating revision surgery when necessary


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. Methods. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Results. The distribution of acetabular component geometries was: LPW 81.2%; hooded 18.7%; and offset reorientating 0.1%. There were 3,313 (1.5%) revision THAs performed, of which 815 (0.4%) were for instability and 838 (0.4%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.31 (p < 0.001) and 4.12 (p = 0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.65 (p < 0.001) in the hooded group and 13.61 (p < 0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first three months. Conclusion. This registry-based study confirms a significantly higher risk of revision after cemented THA for instability and for loosening when a hooded or offset reorientating acetabular component is used, compared to a LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice. Cite this article: Bone Joint J 2021;103-B(11):1669–1677


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 61 - 63
1 Jul 2019
Lawrie CM Schwabe M Pierce A Nunley RM Barrack RL

Aims. The aim of this study was to compare the actual cost of a cemented and cementless total knee arthroplasty (TKA) procedure. Materials and Methods. The cost of operative time, implants, cement, and cementing accessories were included in the overall cost of the TKA procedure. Operative time was determined from a previously published study comparing cemented and cementless implants of the same design. The cost of operative time, implants, cement, and cementing accessories was determined from market and institutional data. Results. Mean operative time for cemented TKA was 11.6 minutes longer for cemented TKA than cementless TKA (93.7 minutes (. sd. 16.7) vs 82.1 minutes (. sd. 16.6); p = 0.001). Using a conservative published standard of $36 per minute for operating theatre time cost, the total time cost was $418 higher for cementing TKA. The cost of cement and accessories ranged from $170 to $625. Overall, the calculated cost of cemented TKA is $588 to $1043, depending on technique. The general increased charge for cementless TKA implants over cemented TKA implants was $366. Conclusion. The overall procedural cost of implanting a cementless TKA is less than implanting a cemented TKA. Cost alone should not be a barrier to using cementless TKA. Cite this article: Bone Joint J 2019;101-B(7 Supple C):61–63


Bone & Joint Open
Vol. 3, Issue 9 | Pages 710 - 715
5 Sep 2022
Khan SK Tyas B Shenfine A Jameson SS Inman DS Muller SD Reed MR

Aims. Despite multiple trials and case series on hip hemiarthroplasty designs, guidance is still lacking on which implant to use. One particularly deficient area is long-term outcomes. We present over 1,000 consecutive cemented Thompson’s hemiarthroplasties over a ten-year period, recording all accessible patient and implant outcomes. Methods. Patient identifiers for a consecutive cohort treated between 1 January 2003 and 31 December 2011 were linked to radiographs, surgical notes, clinic letters, and mortality data from a national dataset. This allowed charting of their postoperative course, complications, readmissions, returns to theatre, revisions, and deaths. We also identified all postoperative attendances at the Emergency and Outpatient Departments, and recorded any subsequent skeletal injuries. Results. In total, 1,312 Thompson’s hemiarthroplasties were analyzed (mean age at surgery 82.8 years); 125 complications were recorded, necessitating 82 returns to theatre. These included 14 patients undergoing aspiration or manipulation under anaesthesia, 68 reoperations (5.2%) for debridement and implant retention (n = 12), haematoma evacuation (n = 2), open reduction for dislocation (n = 1), fixation of periprosthetic fracture (n = 5), and 48 revised stems (3.7%), for infection (n = 13), dislocation (n = 12), aseptic loosening (n = 9), persistent pain (n = 6), periprosthetic fracture (n = 4), acetabular erosion (n = 3), and metastatic bone disease (n = 1). Their status at ten years is summarized as follows: 1,180 (89.9%) dead without revision, 34 (2.6%) dead having had revision, 84 (6.6%) alive with the stem unrevised, and 14 (1.1%) alive having had revision. Cumulative implant survivorship was 90.3% at ten years; patient survivorship was 7.4%. Conclusion. The Thompson’s stem demonstrates very low rates of complications requiring reoperation and revision, up to ten years after the index procedure. Fewer than one in ten patients live for ten years after fracture. This study supports the use of a cemented Thompson’s implant as a cost-effective option for frail hip fracture patients. Cite this article: Bone Jt Open 2022;3(9):710–715


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1113 - 1121
14 Sep 2020
Nantha Kumar N Kunutsor SK Fernandez MA Dominguez E Parsons N Costa ML Whitehouse MR

Aims. We conducted a systematic review and meta-analysis to compare the mortality, morbidity, and functional outcomes of cemented versus uncemented hemiarthroplasty in the treatment of intracapsular hip fractures, analyzing contemporary and non-contemporary implants separately. Methods. PubMed, Medline, EMBASE, CINAHL, and Cochrane Library were searched to 2 February 2020 for randomized controlled trials (RCTs) comparing the primary outcome, mortality, and secondary outcomes of function, quality of life, reoperation, postoperative complications, perioperative outcomes, pain, and length of hospital stay. Relative risks (RRs) and mean differences (with 95% confidence intervals (CIs)) were used as summary association measures. Results. A total of 18 studies corresponding to 16 non-overlapping RCTs with a total of 2,819 intracapsular hip fractures were included. Comparing contemporary cemented versus uncemented hemiarthroplasty, RRs (95% CIs) for mortality were 1.32 (0.44 to 3.99) perioperatively, 1.01 (0.48 to 2.10) at 30 days, and 0.90 (0.71 to 1.15) at one year. The use of contemporary cemented hemiarthroplasty reduced the risk of intra- and postoperative periprosthetic fracture. There were no significant differences in the risk of other complications, function, pain, and quality of life. There were no significant differences in perioperative outcomes except for increases in operating time and overall anaesthesia for contemporary cemented hemiarthroplasty with mean differences (95% CIs) of 6.67 (2.65 to 10.68) and 4.90 (2.02 to 7.78) minutes, respectively. The morbidity and mortality outcomes were not significantly different between non-contemporary cemented and uncemented hemiarthroplasty. Conclusion. There are no differences in the risk of mortality when comparing the use of contemporary cemented with uncemented hemiarthroplasty in the management of intracapsular hip fractures. Contemporary cemented hemiarthroplasty is associated with a substantially lower risk of intraoperative and periprosthetic fractures. Cite this article: Bone Joint J 2020;102-B(9):1113–1121


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1168 - 1176
1 Nov 2023
Yüksel Y Koster LA Kaptein BL Nelissen RGHH den Hollander P

Aims. Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes. Methods. A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively. Results. At five-year follow-up, RSA data from 61 patients were available and the mean maximum total point motion (MTPM) of the femoral components were: ATTUNE: 0.96 mm (95% confidence interval (CI) 0.79 to 1.14) and PFC-Sigma 1.37 mm (95% CI 1.18 to 1.59) (p < 0.001). The PFC-Sigma femoral component migrated more in the first postoperative year, but stabilized thereafter. MPTM of the tibial components were comparable at five-year follow-up: ATTUNE 1.12 mm (95% CI 0.95 to 1.31) and PFC-Sigma 1.25 mm (95% CI 1.07 to 1.44) (p = 0.438). RLL at the medial tibial implant-cement interface remained more prevalent for the ATTUNE at five-year follow-up compared to the PFC-Sigma (20% vs 3%). RLL did not progress over time, and varied between patients at different timepoints for both TKA systems. Clinical outcomes and PROMs improved compared with preoperative scores, and were not different between groups. Conclusion. MTPM migration at five-year follow-up of the femoral and tibial component of the ATTUNE were similar and as low as that of the PFC-Sigma. MTPM migration of both knee implants did not significantly change from one year post-surgery, indicating stable fixation. Long-term ATTUNE performance may be expected to be comparable to the clinically well-performing PFC-Sigma. We have not found evidence of increased tibial component migration as measured by RSA to support concerns about cement debonding and a higher risk of aseptic loosening with the ATTUNE TKA. Cite this article: Bone Joint J 2023;105-B(11):1168–1176


Bone & Joint Research
Vol. 8, Issue 6 | Pages 246 - 252
1 Jun 2019
Liddle A Webb M Clement N Green S Liddle J German M Holland J

Objectives. Previous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. Commonly, the original cement mantle is reshaped, aiding accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone, and have lower cortical perforation rates than other techniques. As far as the authors are aware, the impact of ultrasonic devices on final cement-in-cement bonds has not been investigated. This study assessed the impact of cement removal using the Orthosonics System for Cemented Arthroplasty Revision (OSCAR; Orthosonics) on final cement-in-cement bonds. Methods. A total of 24 specimens were manufactured by pouring cement (Simplex P Bone Cement; Stryker) into stainless steel moulds, with a central rod polished to Stryker Exeter V40 specifications. After cement curing, the rods were removed and eight specimens were allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; and 3) no treatment. Internal holes were recemented, and each specimen was cut into 5 mm discs. Shear testing of discs was completed by a technician blinded to the original grouping, recording ultimate shear strengths. Scanning electron microscopy (SEM) was completed, inspecting surfaces of shear-tested specimens. Results. The mean shear strength for OSCAR-prepared specimens (33.6 MPa) was significantly lower than for the control (46.3 MPa) and burr (45.8 MPa) groups (p < 0.001; one-way analysis of variance (ANOVA) with Tukey’s post hoc analysis). There was no significant difference in shear strengths between control and burr groups (p = 0.57). Scanning electron microscopy of OSCAR specimens revealed evidence of porosity undiscovered in previous studies. Conclusion. Results show that the cement removal technique impacts on final cement-in-cement bonds. This in vitro study demonstrates significantly weaker bonds when using OSCAR prior to recementation into an old cement mantle compared with cement prepared with a burr or no treatment. This infers that care must be taken in surgical decision-making regarding cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need consideration. Cite this article: A. Liddle, M. Webb, N. Clement, S. Green, J. Liddle, M. German, J. Holland. Ultrasonic cement removal in cement-in-cement revision total hip arthroplasty: What is the effect on the final cement-in-cement bond? Bone Joint Res 2019;8:246–252. DOI: 10.1302/2046-3758.86.BJR-2018-0313.R1


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 71 - 78
1 Jan 2021
Maggs JL Swanton E Whitehouse SL Howell JR Timperley AJ Hubble MJW Wilson MJ

Aims. Periprosthetic fractures (PPFs) around cemented taper-slip femoral prostheses often result in a femoral component that is loose at the prosthesis-cement interface, but where the cement-bone interface remains well-fixed and bone stock is good. We aim to understand how best to classify and manage these fractures by using a modification of the Vancouver classification. Methods. We reviewed 87 PPFs. Each was a first episode of fracture around a cemented femoral component, where surgical management consisted of revision surgery. Data regarding initial injury, intraoperative findings, and management were prospectively collected. Patient records and serial radiographs were reviewed to determine fracture classification, whether the bone cement was well fixed (B2W) or loose (B2L), and time to fracture union following treatment. Results. In total, 47 B2W fractures (54.0%) and one B3 fracture (1.1%) had cement that remained well-fixed at the cement-bone interface. These cases were treated with cement-in-cement (CinC) revision arthroplasty. Overall, 43 fractures with follow-up united, and two patients sustained further fractures secondary to nonunion and required further revision surgery. A total of 19 B2L fractures (21.8%) and 19 B3 fractures (21.8%) had cement that was loose at the cement-bone interface. These cases were managed by revision arthroplasty with either cemented or uncemented femoral components, or proximal femoral arthroplasty. One case could not be classified. Conclusion. We endorse a modification of the original Vancouver system to include a subclassification of B2 fractures around cemented femoral prostheses to include B2W (where cement is well-fixed to bone) and B2L (where the cement is loose). Fractures around taper-slip design stems are more likely to fracture in a B2W pattern compared to fractures around composite beam design stems which are more likely to fracture in a B2L pattern. B2W fractures can reliably be managed with CinC revision. Cite this article: Bone Joint J 2021;103-B(1):71–78


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 150 - 157
1 Jun 2021
Anderson LA Christie M Blackburn BE Mahan C Earl C Pelt CE Peters CL Gililland J

Aims. Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using shorter cemented stems instead of diaphyseal engaging cementless stems with a potential benefit of ease of obtaining proper alignment without being beholden to the diaphysis. The purpose of this study was to evaluate short term clinical and radiographic outcomes of a series of TKA cases performed using 3D-printed metaphyseal cones. Methods. A retrospective review of 86 rTKAs and nine complex primary TKAs, with an average age of 63.2 years (SD 8.2) and BMI of 34.0 kg/m. 2. (SD 8.7), in which metaphyseal cones were used for both femoral and tibial fixation were compared for their knee alignment based on the type of stem used. Overall, 22 knees had cementless stems on both sides, 52 had cemented stems on both sides, and 15 had mixed stems. Postoperative long-standing radiographs were evaluated for coronal and sagittal plane alignment. Adjusted logistic regression models were run to assess malalignment hip-knee-ankle (HKA) alignment beyond ± 3° and sagittal alignment of the tibial and femoral components ± 3° by stem type. Results. No patients had a revision of a cone due to aseptic loosening; however, two had revision surgery due to infection. In all, 26 (27%) patients had HKA malalignment; nine (9.5%) patients had sagittal plane malalignment, five (5.6%) of the tibia, and four (10.8%) of the femur. After adjusting for age, sex, and BMI, there was a significantly increased risk for malalignment when a cone was used and both the femur and tibia had cementless compared to cemented stems (odds ratio 3.19, 95% confidence interval 1.01 to 10.05). Conclusion. Porous 3D-printed cones provide excellent metaphyseal fixation. However, these central cones make the use of offset couplers difficult and may generate malalignment with cementless stems. We found 3.19-times higher odds of malalignment in our TKAs performed with metaphyseal cones and both femoral and tibial cementless stems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):150–157


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 51 - 58
1 Jun 2021
Yang J Heckmann ND Nahhas CR Salzano MB Ruzich GP Jacobs JJ Paprosky WG Rosenberg AG Nam D

Aims. Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. Methods. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship. Results. A total of 720 of 754 primary TKAs (95.5%) were included with a mean follow-up of 3.9 years (SD 1.3); 562 (78.1%) were cruciate-retaining and 158 (21.9%) were posterior-stabilized. A total of 11 (1.5%) required reoperation for periprosthetic joint infection and seven (1.0%) for aseptic tibial loosening (five cruciate-retaining, two posterior-stabilized). Loosening occurred at a mean of 3.3 years (0.9 to 6.5). There were no cases of loosening in the 33 patients who received a 14 mm × 30 mm tibial stem extension. All-cause survivorship was 96.6% at three years (95% confidence interval (CI) 95.3% to 98.0%) and 96.2% at five years (95% CI 94.8% to 97.7%). Survivorship with revision for aseptic loosening was 99.6% at three years (95% CI 99.1% to 100.0%) and 99.1% at five years (95% CI 98.4% to 99.9%). Tibial components were in significantly more varus in those with aseptic loosening (mean 3.4° (SD 3.7°) vs 1.3° (SD 2.0°); p = 0.015). There were no other differences in demographic, radiological, or surgical characteristics between revised and non-revised TKAs for aseptic loosening (p = 0.293 to 1.00). Mean KSS improved significantly from 57.3 (SD 9.5) preoperatively to 92.6 (SD 8.9) at the final follow-up (p < 0.001). Conclusion. This is the largest series to date of this design of implant. At short-term follow-up, the rate of aseptic tibial loosening is not overly concerning. Further observation is required to determine if there will be an abnormal rate of loosening at mid- to long-term follow-up. Cite this article: Bone Joint J 2021;103-B(6 Supple A):51–58