This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay.Aims
Methods
Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading.Aims
Methods
Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.Aims
Methods
We describe a method of reconstruction using tumour-bearing autograft treated by liquid nitrogen in 28 patients. The operative technique consisted of en bloc excision of the tumour, removal of soft tissue, curettage of the tumour, drilling and preparation for internal fixation or prosthetic replacement before incubation for 20 minutes in liquid nitrogen, thawing at room temperature for 15 minutes, thawing in distilled water for ten minutes, and internal fixation with an intramedullary nail, plate or composite use of prosthetic replacement. Bone graft or cement was used to augment
One of the aims of this work was to find criteria by which the quality of bone as a supporting tissue might be judged. This inevitably involves discussion and, if possible, assessment, of the relative importance of the inorganic and organic material of the bone. It is relatively easy to measure the mineral content, and for that reason it has always received more than its due share of attention. In the present experiment the composition of the ash of all bones was remarkably constant, with a Ca/P ratio of 2. Furthermore, X-ray crystallography showed that the structure of the inorganic material was the same in all cases. The great difficulty of measuring variations in the quality of the organic material which is, of course, protein in nature makes it impossible to say how much it influences
We compared, under laboratory conditions, the resistance to cutting out of the AO dynamic hip screw and the Pugh sliding nail. The mean load at cut out, adjusted for
The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.Aims
Methods
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article:
Cancer-induced bone diseases are often associated with increased bone resorption and pathological fractures. In recent years, osteoprotective agents such as bisphosphonates have been studied extensively and have been shown to inhibit cancer-related bone resorption in experimental and clinical studies. The third-generation bisphosphonate, ibandronate (BM 21.0955), is a potent compound for controlling tumour osteolysis and hypercalcaemia in rats bearing Walker 256 carcinosarcoma. We have studied the effect of ibandronate given as an interventional treatment on
We aimed to highlight the relationship between age and the architectural properties of trabecular bone, to outline the patterns in which the variations in these properties take place, and to investigate the influence of the architecture on the mechanical properties of trabecular bone in growing animals. We studied 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. They were serially sectioned and their architectural properties were determined. Similar cubes were obtained from the identical anatomical position of the contralateral tibia and their compressive mechanical properties measured. The values obtained from the skeletally immature and mature individuals were compared. Multiple regression analyses were performed between the architectural and the mechanical properties. The bone volume fraction, the mean trabecular volume, the architectural and the mechanical anisotropy, the elastic modulus, the
Our aim was to determine the relationship between age and the mechanical and physical properties of trabecular bone, to describe the patterns in which the variations in these properties take place, and to investigate the influence of the physical properties on the mechanical characteristics of trabecular bone during growth. We used 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. We performed non-destructive compression tests of the specimens in three orthogonal directions and compression tests to failure in the axial direction. The physical properties of the specimens were also determined. The data were correlated with age and compared in skeletally immature and mature animals. Multiple regression analyses were performed between the mechanical and the physical properties. Age correlated positively with elastic modulus,
Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component? A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.Aims
Methods
Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
Many biomechanical studies have shown that the weakest biomechanical point of a rotator cuff repair is the suture-tendon interface at the medial row. We developed a novel double rip-stop (DRS) technique to enhance the strength at the medial row for rotator cuff repair. The objective of this study was to evaluate the biomechanical properties of the DRS technique with the conventional suture-bridge (SB) technique and to evaluate the biomechanical performance of the DRS technique with medial row knots. A total of 24 fresh-frozen porcine shoulders were used. The infraspinatus tendons were sharply dissected and randomly repaired by one of three techniques: SB repair (SB group), DRS repair (DRS group), and DRS with medial row knots repair (DRSK group). Specimens were tested to failure. In addition, 3 mm gap formation was measured and ultimate failure load, stiffness, and failure modes were recorded.Aims
Methods
To examine the relationship of sex steroid hormones with osteopenia in a nationally representative sample of men in the USA. Data on bone mineral density (BMD), serum sex hormones, dairy consumption, smoking status, and body composition were available for 806 adult male participants of the cross-sectional National Health and Nutrition Examination Survey (NHANES, 1999-2004). We estimated associations between quartiles of total and estimated free oestradiol (E2) and testosterone (T) and osteopenia (defined as 1 to 2.5 SD below the mean BMD for healthy 20- to 29-year-old men) by applying sampling weights and using multivariate-adjusted logistic regression. We then estimated the association between serum hormone concentrations and osteopenia by percentage of body fat, frequency of dairy intake, cigarette smoking status, age, and race/ethnicity.Aims
Methods
Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion.Objectives
Methods
In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians. A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians.Objectives
Methods
This investigation sought to advance the work published in our prior biomechanical study ( A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio.Objectives
Materials and Methods