Advertisement for orthosearch.org.uk
Results 21 - 40 of 772
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 565 - 576
1 May 2009
Getgood A Brooks R Fortier L Rushton N

Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 1 | Pages 198 - 215
1 Feb 1968
Urist MR Adams T

1. Isografts of articular cartilage of young rats, with mucoproteins labelled with . 35. S, extracellular fibrous proteins labelled with . 3. H-glycine, and nuclei labelled with . 3. H-thymidine, were transplanted into the anterior chamber of the eye. 2. Thin split-thickness transplants of the cells of the gliding surface of immature articular cartilage induced the formation of fibrous tissue. 3. Thick transplants and subsurface slices of immature articular cartilage, containing germinal cells of the epiphysial cartilage, induced the formation of new bone consistently within 4 weeks. 4. Full-thickness transplants in articular cartilage from senile rats induced only the formation of fibrous tissue. 5. Slices of growing cartilage, devitalised by cryolysis, or extraction of acid-soluble proteins, produced scanty deposits of bone or cartilage, or both, but only infrequently and generally after a lag phase extending from six to twelve weeks. 6. Reduction in the amount of mucoprotein in the cartilage matrix by papain, and suppression of the resynthesis of tissue proteins by cortisone, retarded but did not prevent bone induction. 7. Bone induction is the product of a series of interactions between inducing cells and responding cells by intracellular and intercellular reactions too complex to characterise in physico-chemical terms at this time


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 277 - 284
1 Feb 2011
Amin AK Huntley JS Patton JT Brenkel IJ Simpson AHRW Hall AC

The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces in situ chondrocyte death following a standardised mechanical injury produced by a scalpel cut compared with the same assault and exposure to normal saline (0.9%, 285 mOsm). Human cartilage explants were exposed to normal (control) and hyperosmotic 0.9% saline solutions for five minutes before the mechanical injury to allow in situ chondrocytes to respond to the altered osmotic environment, and incubated for a further 2.5 hours in the same solutions following the mechanical injury. Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair


The Journal of Bone & Joint Surgery British Volume
Vol. 57-B, Issue 4 | Pages 525 - 528
1 Nov 1975
Lutfi AM

The medial meniscus was resected from the right knees of twelve young grivet monkeys that were killed at intervals of twenty-one to 252 days after operation. The knees operated upon and the control knees were investigated radiologically and histologically. Degenerative changes occurred in the medial femoral and tibial condyles. At first there was loss of cells from the superficial layer of the articular cartilage, with a marked decrease in the acid mucopolysaccharide content of the matrix. The chondrocytes in the deeper layer of the non-calcified zone proliferated to form clones before finally degenerating. The acellular cartilage showed splitting, and with progress of the degenerative process there was thinning and erosion of the cartilage. Eventually there was complete loss of articular cartilage with thickening and exposure of the subchondral bone. These degenerative changes were confined to a small area of the articular cartilage and had occurred despite regeneration of the meniscus. The rest of the cartilage looked normal. It is concluded that articular cartilage deprived of the protection of a meniscus may undergo arthritic changes


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1285 - 1291
1 Sep 2005
Whiteside RA Jakob RP Wyss UP Mainil-Varlet P

Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes. Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1033 - 1040
1 Jul 2010
Nishino T Chang F Ishii T Yanai T Mishima H Ochiai N

We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 1 | Pages 167 - 177
1 Feb 1974
Sengupta S

1. Articular cartilage from immature rabbits was placed in and near the rabbit knee joints for periods up to ten weeks. 2. Autografts of articular cartilage when placed free in the joint soon became adherent to its synovial lining; the cartilage with its subchondral bone remained viable. 3. Homografts remained viable in the presence of joint fluid, but when in contact with synovium antigenic cellular reaction was produced early. The presence of subchondral bone intensified this reaction and led to graft invasion and destruction. 4. Partial thickness homografts of articular cartilage were also antigenic and were absorbed. When full thickness cartilage was used, this cellular invasion was resisted by the zone of provisional calcification which appeared to function as a physical barrier against antigenic cells of the host. 5. When placed in muscle, both autogenous and homogenous grafts failed to survive through lack of nutrition, although the autogenous subchondral bone remained viable. It is inferred that subchondral circulation is not sufficient for cartilage survival and synovial fluid is essential for its proper nutrition. 6. Surviving immature articular cartilage transplants underwent "ageing" changes


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 232 - 239
1 Mar 2024
Osmani HT Nicolaou N Anand S Gower J Metcalfe A McDonnell S

Aims

To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults.

Methods

The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers.


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 3 | Pages 541 - 548
1 Aug 1971
Repo RU Mitchell N

1. The utilisation of labelled proline in normal and injured mature rabbit articular cartilage has been studied and compared simultaneously in one phase of the study with radiosulphate utilisation. The morphologic features of lacerative injury paralleled those reported previously. 2. Labelled proline is actively utilised by mature articular cartilage and can be recovered in time from the matrix as labelled hydroxyproline. This is taken as evidence of collagen synthesis. 3. Evidence is presented to suggest that the rate of formation of labelled hydroxyproline may be augmented after lacerative trauma. 4. Parallel utilisation of radiosulphate and labelled proline suggests that the synthesis of chondromucoprotein and collagen are closely related and that the continual synthesis of both moieties is necessary for the maintenance of normal matrix. 5. Despite evidence of increased chondromucoprotein and collagen synthesis no significant contribution is made to the healing of lacerative defects in mature rabbit articular cartilage


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 4 | Pages 852 - 857
1 Nov 1968
Bullough P Goodfellow J

The collagen framework of articular cartilage is disposed, as in other connective tissues, to resist tension forces within the material. In this paper the fine structure of articular cartilage, as demonstrated by polarised light microscopy and electron microscopy, is related to the gross anatomy and to the naked eye changes of chondromalacia and fibrillation


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 4 | Pages 747 - 753
1 Nov 1969
Greenwald AS Haynes DW

1. The routes by which adult human articular cartilage can receive its nutrition is still a subject of controversy. 2. Microscopic examination of normal adult human femoral heads has revealed vascular channels which penetrate the subchondral plate and calcified cartilage. These channels bring the medullary soft tissue into contact with the articular cartilage. 3. A fluorescent dye migration technique was used to show that the observed vascular channels are pathways for dye from the medullary cavity to the articular cartilage. It is suggested that these pathways could also be routes by which articular cartilage receives part of its nutrition. 4. The nutritional mechanism in the mature rabbit and adult human femoral heads cannot be compared because histological studies revealed differences in their subchondral structures


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 3 | Pages 588 - 594
1 Aug 1973
Rothwell AG Bentley G

1. Twelve trephine specimens of articular cartilage and subchondral bone taken from six fresh osteoarthritic femoral heads were incubated in a medium containing tritiated thymidine, and autoradiographs were prepared from serial sections five microns thick. 2. Scattered labelling of chondrocytes in sections from four of the six femoral heads was demonstrated. No more than four labelled cells were seen in any one section. About half were found in typical chondrocyte clusters. 3. The implications of this evidence of chondrocyte multiplication with regard to the repair of damaged articular cartilage are discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 693 - 700
1 May 2007
Ishii I Mizuta H Sei A Hirose J Kudo S Hiraki Y

We have investigated in vitro the release kinetics and bioactivity of fibroblast growth factor-2 (FGF-2) released from a carrier of fibrin sealant. In order to evaluate the effects of the FGF-2 delivery mechanism on the repair of articular cartilage, full-thickness cylindrical defects, 5 mm in diameter and 4 mm in depth, which were too large to undergo spontaneous repair, were created in the femoral trochlea of rabbit knees. These defects were then filled with the sealant. Approximately 50% of the FGF-2 was released from the sealant within 24 hours while its original bioactivity was maintained. The implantation of the fibrin sealant incorporating FGF-2 successfully induced healing of the surface with hyaline cartilage and concomitant repair of the subchondral bone at eight weeks after the creation of the defect. Our findings suggest that this delivery method for FGF-2 may be useful for promoting regenerative repair of full-thickness defects of articular cartilage in humans


The Journal of Bone & Joint Surgery British Volume
Vol. 52-B, Issue 1 | Pages 108 - 118
1 Feb 1970
Lowe HG

1. Six cases of necrosis of articular cartilage complicating slipping of the upper femoral epiphysis are reviewed: histological examination in one case showed death of the superficial two-thirds of the articular cartilage, with survival of a layer of basal chondrocytes. In all six cases, after severe initial reduction of joint space as seen radiographically, there was gradual return of joint space, suggesting some regeneration of articular cartilage. The prognosis after cartilage necrosis is therefore not always so bad as has been supposed. 2. Various hypotheses concerning the cause of cartilage necrosis complicating slipped epiphysis are reviewed. The precise cause remains unknown, but there is substantial evidence against its being a consequence of ischaemia of the femoral head


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 721 - 729
1 May 2005
Yanai T Ishii T Chang F Ochiai N

We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 590 - 595
1 May 2018
Sawa M Nakasa T Ikuta Y Yoshikawa M Tsuyuguchi Y Kanemitsu M Ota Y Adachi N

Aims. The aim of this study was to evaluate antegrade autologous bone grafting with the preservation of articular cartilage in the treatment of symptomatic osteochondral lesions of the talus with subchondral cysts. Patients and Methods. The study involved seven men and five women; their mean age was 35.9 years (14 to 70). All lesions included full-thickness articular cartilage extending through subchondral bone and were associated with subchondral cysts. Medial lesions were exposed through an oblique medial malleolar osteotomy, and one lateral lesion was exposed by expanding an anterolateral arthroscopic portal. After refreshing the subchondral cyst, it was grafted with autologous cancellous bone from the distal tibial metaphysis. The fragments of cartilage were fixed with 5-0 nylon sutures to the surrounding cartilage. Function was assessed at a mean follow-up of 25.3 months (15 to 50), using the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot outcome score. The radiological outcome was assessed using MRI and CT scans. Results. The mean AOFAS score improved from 65.7 (47 to 81) preoperatively to 92 (90 to 100) at final follow-up, with 100% patient satisfaction. The radiolucent area of the cysts almost disappeared on plain radiographs in all patients immediately after surgery, and there were no recurrences at the most recent follow-up. The medial malleolar screws were removed in seven patients, although none had symptoms. At this time, further arthroscopy was undertaken, when it was found that the mean International Cartilage Repair Society (ICRS) arthroscopic score represented near-normal cartilage. Conclusion. Autologous bone grafting with fixation of chondral fragments preserves the original cartilage in the short term, and could be considered in the treatment for adult patients with symptomatic osteochondral defect and subchondral cysts. Cite this article: Bone Joint J 2018;100-B:590–5


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 5 | Pages 795 - 801
1 Sep 1991
Jeffery A Blunn G Archer C Bentley G

The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1001 - 1004
1 Sep 2001
Yasunaga Y Ikuta Y Kanazawa T Takahashi K Hisatome T

We have studied whether the state of the articular cartilage at the time of rotational acetabular osteotomy for dysplasia of the hip affects the outcome 2 to 5.5 years after surgery. Arthroscopy in 57 patients (59 joints) at the time of the operation showed grade-0 changes in seven, grade-1 in nine, grade-2 in 17, grade-3 in 14 and grade-4 in 12 joints, according to the classification of Outerbridge. There was radiological evidence of the progression of arthritis in four joints which were classified at arthroscopy as grade 4. Stepwise regression analysis showed that damage to acetabular or femoral articular cartilage significantly affected the progression of arthritis. We conclude that the short-term results of successful rotational acetabular osteotomy for dysplasia are affected by the state of the articular cartilage


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 1 | Pages 150 - 161
1 Feb 1963
Meachim G

1. The changes resulting from superficial scarification of articular cartilage have been observed in the knee joint of adult rabbits. A reduction in the amount of stainable matrix ground substance occurred at the sites of damage. Particular attention was therefore paid to sulphated mucopolysaccharide synthesis by cartilage cells in or near the traumatised areas. 2. The femoral groove cartilage one week after scarification showed evidence of increased mucopolysaccharide synthesis, especially by the more superficial chondrocytes near the cuts, but three or four weeks later the enhanced chondrocyte activity tended to diminish, and after six weeks the superficial cells near the cuts were found to be inactive. From six to thirty-four weeks the loss of stainable ground substance extended more deeply, but cell degeneration in these deeper areas of matrix depletion was preceded by a period in which many of the deeper chondrocytes still showed evidence of active mucopolysaccharide synthesis. Cellular activity in tags of depleted cartilage was usually lost before the tags finally disintegrated. Chondrocyte clusters were often seen in the scarified areas, especially in the deeper zones. They seemed to be a reactive rather than degenerative phenomenon. 3. In the scarified cartilages of the patella examined after one week a reactive response by superficial chondrocytes was less evident than in the femoral cartilage from the same joint, and after six weeks areas of deeply extending matrix loss were exceptional. 4. The structural and functional changes in the rabbits' femoral articular cartilage after its scarification resembled those which have been observed in the developing cartilage lesion of human osteoarthritis–namely, loss of interstitial matrix and superficial fibrillation, a stimulated synthesis of chondroitin sulphate by the chondrocytes, and the appearance of cell clusters in the deeper zones. Within the period of the experiment, up to thirty-four weeks, the joint lesions remained strictly localised to the traumatised areas ofcartilage, and exposure of bone and joint remodelling, which are features of advanced osteoarthritis in man, were not seen


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 941 - 948
1 Jul 2010
Stone KR Adelson WS Pelsis JR Walgenbach AW Turek TJ

We describe 119 meniscal allograft transplantations performed concurrently with articular cartilage repair in 115 patients with severe articular cartilage damage. In all, 53 (46.1%) of the patients were over the age of 50 at the time of surgery. The mean follow-up was for 5.8 years (2 months to 12.3 years), with 25 procedures (20.1%) failing at a mean of 4.6 years (2 months to 10.4 years). Of these, 18 progressed to knee replacement at a mean of 5.1 years (1.3 to 10.4). The Kaplan-Meier estimated mean survival time for the whole series was 9.9 years (. sd. 0.4). Cox’s proportional hazards model was used to assess the effect of covariates on survival, with age at the time of surgery (p = 0.026) and number of previous operations (p = 0.006) found to be significant. The survival of the transplant was not affected by gender, the severity of cartilage damage, axial alignment, the degree of narrowing of the joint space or medial versus lateral allograft transplantation. Patients experienced significant improvements at all periods of follow-up in subjective outcome measures of pain, activity and function (all p-values < 0.05), with the exception of the seven-year Tegner index score (p = 0.076)