The clinical and radiological results of 50 consecutive
The February 2015 Hip &
Pelvis Roundup. 360 . looks at: Hip arthroplasty in Down syndrome; Bulk femoral autograft successful in
Aims. The advent of trabecular metal (TM) augments has revolutionized
the management of severe bone defects during
Aims. Reconstruction of the acetabulum after failed total hip arthroplasty
(THA) can be a surgical challenge in the presence of severe bone
loss. We report the long-term survival of a porous tantalum revision
acetabular component, its radiological appearance and quality of
life outcomes. Patients and Methods. We reviewed the results of 46 patients who had undergone revision
of a failed acetabular component with a Paprosky II or III bone
defect and reconstruction with a hemispherical, tantalum acetabular
component, supplementary screws and a cemented polyethylene liner. Results. After a minimum follow-up of ten years (ten to 12), the survivorship
of the porous tantalum acetabular component was 96%, with further
revision of the acetabular component as the end point. The ten-year
survivorship, with hip revision for any reason as the end point,
was 92%. We noted excellent pain relief (mean Western Ontario and
McMaster Universities Arthritis Index (WOMAC) score pain 92.6, (40
to 100)) and good functional outcomes (mean WOMAC function 90.3
(30.9 to 100), mean University of California Los Angeles activity
scale 5 (2 to 10)) and generic quality of life measures (mean Short
Form-12 (SF-12) physical component 48.3 (18.1 to 56.8), mean SF-12
mental component 56.7 (32.9 to 70.3)). Patient satisfaction with
pain relief, function and return to recreational activities were
excellent. Take home message: Uncemented
We retrospectively reviewed 40 hips in 36 patients who had undergone
The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0).Aims
Methods
The custom triflange is a patient-specific implant
for the treatment of severe bone loss in revision total hip arthroplasty
(THA). Through a process of three-dimensional modelling and prototyping,
a hydroxyapatite-coated component is created for
We investigated the early results of modular porous metal components used in 23
The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis.Aims
Methods
The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants.Aims
Methods
The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article:
We present an update of the clinical and radiological results of 62 consecutive acetabular revisions using impacted morsellised cancellous bone grafts and a cemented acetabular component in 58 patients, at a mean follow-up of 22.2 years (20 to 25). The Kaplan-Meier survivorship for the acetabular component with revision for any reason as the endpoint was 75% at 20 years (95% confidence interval (CI) 62 to 88) when 16 hips were at risk. Excluding two revisions for septic loosening at three and six years, the survivorship at 20 years was 79% (95% CI 67 to 93). With further exclusions of one revision of a well-fixed acetabular component after 12 years during a femoral revision and two after 17 years for wear of the acetabular component, the survivorship for aseptic loosening was 87% at 20 years (95% CI 76 to 97). At the final review 14 of the 16 surviving hips had radiographs available. There was one additional case of radiological loosening and four
The October 2024 Oncology Roundup360 looks at: Composite reconstruction: is it the answer for pelvic resections?; Can the cartilaginous thickness determine the risk of malignancy in pelvic cartilaginous tumours, and how accurate is the preoperative biopsy of these tumours?; Incidence and survival outcomes of patients with high-grade appendicular bone sarcoma and isolated regional lymph node metastasis; Improved metastatic-free survival after systematic re-excision following complete macroscopic unplanned excision of limb or trunk soft-tissue sarcoma; UK guidelines for the management of soft-tissue sarcomas; Current management of desmoid tumours: a review.
To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.Aims
Methods
We performed 52 total hip replacements in 52 patients using a cementless acetabular component combined with a circumferential osteotomy of the medial acetabular wall for the late sequelae of childhood septic arthritis of the hip. The mean age of the patients at operation was 44.5 years (22 to 66) and the mean follow-up was 7.8 years (5 to 11.8). The mean improvement in the Harris Hip Score was 29.6 points (19 to 51) at final follow-up. The mean cover of the acetabular component was 98.5% (87.8% to 100%). The medial acetabular wall was preserved with a mean thickness of 8.3 mm (1.7 to 17.4) and the mean length of abductor lever arm increased from 43.4 mm (19.1 to 62) to 54.2 mm (36.5 to 68.6). One acetabular component was revised for loosening and osteolysis 4.5 years postoperatively, and one had radiolucent lines in all acetabular zones at final review. Kaplan-Meier survival was 94.2% (95% confidence interval 85.8% to 100%) at 7.3 years, with revision or radiological loosening as an end-point when two hips were at risk. A cementless acetabular component combined with circumferential medial acetabular wall osteotomy provides favourable results for
Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.Aims
Methods
The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA). Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance.Aims
Methods
Periprosthetic joint infection (PJI) represents a complex challenge in orthopaedic surgery associated with substantial morbidity and healthcare expenditures. The debridement, antibiotics, and implant retention (DAIR) protocol is a viable treatment, offering several advantages over exchange arthroplasty. With the evolution of treatment strategies, considerable efforts have been directed towards enhancing the efficacy of DAIR, including the development of a phased debridement protocol for acute PJI management. This article provides an in-depth analysis of DAIR, presenting the outcomes of single-stage, two-stage, and repeated DAIR procedures. It delves into the challenges faced, including patient heterogeneity, pathogen identification, variability in surgical techniques, and antibiotics selection. Moreover, critical factors that influence the decision-making process between single- and two-stage DAIR protocols are addressed, including team composition, timing of the intervention, antibiotic regimens, and both anatomical and implant-related considerations. By providing a comprehensive overview of DAIR protocols and their clinical implications, this annotation aims to elucidate the advancements, challenges, and potential future directions in the application of DAIR for PJI management. It is intended to equip clinicians with the insights required to effectively navigate the complexities of implementing DAIR strategies, thereby facilitating informed decision-making for optimizing patient outcomes. Cite this article:
Isolated acetabular liner exchange with a highly crosslinked polyethylene (HXLPE) component is an option to address polyethylene wear and osteolysis following total hip arthroplasty (THA) in the presence of a well-fixed acetabular shell. The liner can be fixed either with the original locking mechanism or by being cemented within the acetabular component. Whether the method used for fixation of the HXLPE liner has any bearing on the long-term outcomes is still unclear. Data were retrieved for all patients who underwent isolated acetabular component liner exchange surgery with a HXLPE component in our institute between August 2000 and January 2015. Patients were classified according to the fixation method used (original locking mechanism (n = 36) or cemented (n = 50)). Survival and revision rates were compared. A total of 86 revisions were performed and the mean duration of follow-up was 13 years.Aims
Methods
Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction.Aims
Methods