Advertisement for orthosearch.org.uk
Results 21 - 40 of 2200
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1458 - 1463
1 Nov 2013
Won S Lee Y Ha Y Suh Y Koo K

Pre-operative planning for total hip replacement (THR) is challenging in hips with severe acetabular deformities, including those with a hypoplastic acetabulum or severe defects and in the presence of arthrodesis or ankylosis. We evaluated whether a Rapid Prototype (RP) model, which is a life-sized reproduction based on three-dimensional CT scans, can determine the feasibility of THR and provide information about the size and position of the acetabular component in severe acetabular deformities. THR was planned using an RP model in 21 complex hips in five men (five hips) and 16 women (16 hips) with a mean age of 47.7 years (24 to 70) at operation. An acetabular component was implanted successfully and THR completed in all hips. The acetabular component used was within 2 mm of the predicted size in 17 hips (80.9%). All of the acetabular components and femoral stems had radiological evidence of bone ingrowth and stability at the final follow-up, without any detectable wear or peri-prosthetic osteolysis. The RP model allowed a simulated procedure pre-operatively and was helpful in determining the feasibility of THR pre-operatively, and to decide on implant type, size and position in complex THRs. Cite this article: Bone Joint J 2013;95-B:1458–63


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1513 - 1518
1 Nov 2006
Henckel J Richards R Lozhkin K Harris S Baena FMRY Barrett ARW Cobb JP

Surgeons need to be able to measure angles and distances in three dimensions in the planning and assessment of knee replacement. Computed tomography (CT) offers the accuracy needed but involves greater radiation exposure to patients than traditional long-leg standing radiographs, which give very little information outside the plane of the image. There is considerable variation in CT radiation doses between research centres, scanning protocols and individual scanners, and ethics committees are rightly demanding more consistency in this area. By refining the CT scanning protocol we have reduced the effective radiation dose received by the patient down to the equivalent of one long-leg standing radiograph. Because of this, it will be more acceptable to obtain the three-dimensional data set produced by CT scanning. Surgeons will be able to document the impact of implant position on outcome with greater precision


Bone & Joint 360
Vol. 8, Issue 4 | Pages 1 - 3
1 Aug 2019
Buckley R


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 760 - 767
1 Jul 2000
Watanabe H Shinozaki T Yanagawa T Aoki J Tokunaga M Inoue T Endo K Mohara S Sano K Takagishi K

We performed positron emission tomography (PET) with . 18. fluorine-fluoro-2-deoxy-D-glucose (FDG) on 55 patients with tumours involving the musculoskeletal system in order to evaluate its role in operative planning. The standardised uptake value (SUV) of FDG was calculated and, to distinguish malignancies from benign lesions, the cases were divided into high (≥ 1.9) and low (< 1.9) SUV groups. The sensitivity of PET for correctly diagnosing malignancy was 100% with a specificity of 76.9% and an overall accuracy of 83.0%. The mean SUV for metastatic lesions was twice that for primary sarcomas (p < 0.0015). Our results suggest that the SUV may be useful in differentiating malignant tumours from benign lesions. However, some of the latter, such as schwannomas, had high SUVs so that biopsy or wide resection was selected as the first operation. Thus, some other quantitative analysis may be required for preoperative planning in cases of high-SUV neurogenic benign tumours. The reverse transcription-polymerase chain reaction revealed that the RNA message of a key enzyme in glucose metabolism, phosphohexose isomerase (PHI)/autocrine motility factor, was augmented in only high FDG-uptake lesions, suggesting that a high expression of the PHI message may be associated with accumulation of FDG in musculoskeletal tumours


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 374 - 380
1 Mar 2016
Kocsis G Thyagarajan DS Fairbairn KJ Wallace WA

Aims. Glenoid bone loss can be a challenging problem when revising a shoulder arthroplasty. Precise pre-operative planning based on plain radiographs or CT scans is essential. We have investigated a new radiological classification system to describe the degree of medialisation of the bony glenoid and that will indicate the amount of bone potentially available for supporting a glenoid component. It depends on the relationship between the most medial part of the articular surface of the glenoid with the base of the coracoid process and the spinoglenoid notch: it classifies the degree of bone loss into three types. It also attempts to predict the type of glenoid reconstruction that may be possible (impaction bone grafting, structural grafting or simple non-augmented arthroplasty) and gives guidance about whether a pre-operative CT scan is indicated. Patients and Methods. Inter-method reliability between plain radiographs and CT scans was assessed retrospectively by three independent observers using data from 39 randomly selected patients. . Inter-observer reliability and test-retest reliability was tested on the same cohort using Cohen's kappa statistics. Correlation of the type of glenoid with the Constant score and its pain component was analysed using the Kruskal-Wallis method on data from 128 patients. Anatomical studies of the scapula were reviewed to explain the findings. Results. Excellent inter-method reliability, inter-observer and test-retest reliability were seen. The system did not correlate with the Constant score, but correlated well with its pain component. . Take home message: Our system of classification is a helpful guide to the degree of glenoid bone loss when embarking on revision shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:374–80


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 515 - 519
1 Apr 2006
de Loubresse CG Mullins MM Moura B Marmorat J Piriou P Judet T

Spinal deformities are a common feature of Marfan’s syndrome and can be a significant cause of morbidity. The morphology of the scoliosis associated with this condition was previously described by Sponseller, but no correlation with the pelvic parameters has been seen. We performed a retrospective radiological study of 58 patients with scoliosis, secondary to Marfan’s syndrome and related the findings in the thoracolumbar spine to the pelvic parameters, including pelvic version (tilt), pelvic incidence and sacral slope. Our results showed marked abnormalities in the pelvic values compared with those found in the unaffected population, with increased retroversion of the pelvis in particular. In addition we found a close correlation between the different patterns of pelvic parameters and scoliosis morphology. We found that pelvic abnormalities may partially dictate the spinal disorders seen in Marfan’s syndrome. Our results supplement the well-established Sponseller classification, as well as stressing the importance of considering the orientation of the pelvis when planning surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 1 | Pages 158 - 159
1 Jan 1992
Watson J Hollingdale J


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1418 - 1424
1 Oct 2016
Salandy A Malhotra K Goldberg AJ Cullen N Singh D

Aims

Smoking is associated with post-operative complications but smokers often under-report the amount they smoke. Our objective was to determine whether a urine dipstick test could be used as a substitute for quantitative cotinine assays to determine smoking status in patients.

Patients and Methods

Between September 2013 and July 2014 we conducted a prospective cohort study in which 127 consecutive patients undergoing a planned foot and ankle arthrodesis or osteotomy were included. Patients self-reported their smoking status and were classified as: ‘never smoked’ (61 patients), ‘ex-smoker’ (46 patients), or ‘current smoker’ (20 patients). Urine samples were analysed with cotinine assays and cotinine dipstick tests.


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 2 | Pages 267 - 271
1 Mar 1988
Colhoun E McCall I Williams L Cassar Pullicino V

In a prospective study we attempted to define the role of lumbar discography in the investigation of patients with low back pain with or without non-dermatomal pain in the lower limb. The records of 195 patients were studied at least two years after a technically successful operation. Of 137 patients in whom discography had revealed disc disease and provoked symptoms, 89% derived significant and sustained clinical benefit from operation. Of 25 patients whose discs showed morphological abnormality but had no provocation of symptoms on discography only 52% had clinical success. These findings support the continued use of lumbar discography for the investigation of this particular group of patients.


Aims. This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. Methods. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy. Results. The maximum resection amount error was 2 mm. Out of 29 resection amount errors, 15 (51.7%) were grade 1 errors and 14 (48.3%) were grade 2 errors. Complex resections were associated with higher-grade resection amount errors (p < 0.001). The actual resection margins correlated significantly with the planned margins; however, there were some discrepancies. The maximum guide-fitting error was 3 mm. There were 22 (75.9%), five (17.2%), and two (6.9%) grade 1, 2, and 3 guide-fitting errors, respectively. There was no significant association between complex resection and fitting error grades. The guide distortion after one month in all patients was rated as grade 1. Conclusion. In terms of the accurate resection amount according to the preoperative planning, 3DP-PSRGs can be a viable option for bone tumour resection. However, 3DP-PSRG use may be associated with resection margin length discrepancies relative to the planned margins. Such discrepancies should be considered when determining surgical margins. Therefore, a thorough evaluation of the preoperative imaging and surgical planning is still required, even if 3DP-PSRGs are to be used. Cite this article: Bone Joint J 2023;105-B(2):190–197


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving anatomical reconstruction. Accuracy of achieved placement contributed to reduced complications with no injury to vital structures by screw fixation. Cite this article: Bone Joint J 2022;104-B(10):1110–1117


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article: Bone Joint J 2024;106-B(9):892–897


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 47 - 53
1 May 2024
Jones SA Parker J Horner M

Aims. The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. Methods. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis. Results. A total of 105 procedures were carried out in 100 patients (five bilateral) with a mean age of 73 years (42 to 94). In the IIIA defects treated, 72.0% (36 of 50) required a porous metal augment; the remaining 14 patients were treated with a hemispherical acetabular component alone. In the IIIB defects, 63.6% (35 of 55) underwent reconstruction as planned with 20 patients who actually required a hemispherical acetabular component alone. At mean follow-up of 7.6 years, survival was 94.3% (95% confidence interval 97.4 to 88.1) for all-cause revision and the overall dislocation rate was 3.8% (4 of 105). There was no difference observed in survival between type IIIA and type IIIB defects and whether a hemispherical implant alone was used for the reconstruction or not. The mean gain in OHS was 16 points. Custom-made implants were only used in six cases, in patients with either a mega-defect in which the anteroposterior diameter > 80 mm, complex pelvic discontinuity, and massive bone loss in a small pelvis. Conclusion. Our findings suggest that a reconstruction algorithm can provide a successful approach to reconstruction in major acetabular bone loss. The use of custom implants has been defined in this series and accounts for < 5% of cases. Cite this article: Bone Joint J 2024;106-B(5 Supple B):47–53


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims. Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. Methods. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner. Results. The configuration with lateralization and correction of the RSA angle (C+L+) led to better ROM in flexion, extension, adduction, and external rotation (p ≤ 0.001). Only internal rotation was not significantly different between groups (p = 0.388). The configuration where correction of the inclination was done by medialization (C+M+) led to the worst ROM in adduction, extension, abduction, flexion, and external rotation of the shoulder. Conclusion. Our software study shows that, when using a 135° inlay reversed humeral implant, correcting glenoid inclination (RSA angle 0°) and lateralizing the glenoid component by using an angled bony or metallic augment of 8 to 10 mm provides optimal impingement-free ROM. Cite this article: Bone Jt Open 2024;5(10):851–857


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims. Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach. Methods. From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported. Results. The mean follow-up was 39.7 months (standard deviation (SD) 26.4). The mean age at surgery was 11.4 years (SD 1.6). No major complications were recorded. One patient required a total hip arthroplasty. Mean femoral head sphericity increased from 46.8% (SD 9.34%) to 70.2% (SD 15.44; p < 0.001); mean LCEA from 19.2° (SD 9.03°) to 44° (SD 10.27°; p < 0.001); mean extrusion index from 37.8 (SD 8.70) to 7.5 (SD 9.28; p < 0.001); and mean Tönnis angle from 16.5° (SD 12.35°) to 4.8° (SD 4.05°; p = 0.100). The mean VAS improved from 3.55 (SD 3.05) to 1.22 (1.72; p = 0.06); mean Merle d’Aubigné-Postel score from 14.55 (SD 1.74) to 16 (SD 1.6; p = 0.01); and mean mHHS from 60.6 (SD 18.06) to 81 (SD 6.63; p = 0.021). The EQ-5D-5L also showed significant improvements. Conclusion. FHRO associated with periacetabular procedures is a safe technique that showed improved functional, clinical, and morphological outcomes in Perthes’ disease. The newly introduced simulation and planning algorithm may help to further refine the technique. Cite this article: Bone Joint J 2024;106-B(5 Supple B):40–46


Bone & Joint Open
Vol. 4, Issue 1 | Pages 13 - 18
5 Jan 2023
Walgrave S Oussedik S

Abstract. Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan. Cite this article: Bone Jt Open 2023;4(1):13–18