Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.
Large-head metal-on-metal (MoM) total hip replacements
(THR) have given rise to concern. Comparative studies of small-head
MoM THRs over a longer follow-up period are lacking. Our objective
was to compare the incidence of complications such as infection,
dislocation, revision, adverse local tissue reactions, mortality
and radiological and clinical outcomes in small-head (28 mm) MoM
and ceramic-on-polyethylene (CoP) THRs up to 12 years post-operatively. A prospective cohort study included 3341 THRs in 2714 patients.
The mean age was 69.1 years (range 24 to 98) and 1848 (55.3%) were
performed in women, with a mean follow-up of 115 months (18 to 201).
There were 883 MoM and 2458 CoP bearings. Crude incidence rates
(cases/1000 person-years) were: infection 1.3 In conclusion, we found similar results for small-head MoM and
CoP bearings up to ten years post-operatively, but after ten years
MoM THRs had a higher risk of all-cause revision. Furthermore, the
presence of an adverse response to metal debris seen in the small-head
MOM group at revision is a cause for concern. Cite this article:
In this paper, we will consider the current role
of metal-on-metal bearings by looking at three subtypes of MoM hip
arthroplasty separately: Hip resurfacing, large head (>
36 mm) MoM
THA and MoM THA with traditional femoral head sizes.
We reviewed the literature on the currently available
choices of bearing surface in total hip replacement (THR). We present
a detailed description of the properties of articulating surfaces
review the understanding of the advantages and disadvantages of
existing bearing couples. Recent technological developments in the
field of polyethylene and ceramics have altered the risk of fracture
and the rate of wear, although the use of metal-on-metal bearings has
largely fallen out of favour, owing to concerns about reactions
to metal debris. As expected, all bearing surface combinations have
advantages and disadvantages. A patient-based approach is recommended,
balancing the risks of different options against an individual’s
functional demands. Cite this article:
An ongoing prospective study to investigate failing metal-on-metal
hip prostheses was commenced at our centre in 2008. We report on
the results of the analysis of the first consecutive 126 failed
mated total hip prostheses from a single manufacturer. Analysis was carried out using highly accurate coordinate measuring
to calculate volumetric and linear rates of the articular bearing
surfaces and also the surfaces of the taper junctions. The relationship
between taper wear rates and a number of variables, including bearing
diameter and orientation of the acetabular component, was investigated.Objectives
Methods
We measured the orientation of the acetabular and femoral components in 45 patients (33 men, 12 women) with a mean age of 53.4 years (30 to 74) who had undergone revision of metal-on-metal hip resurfacings. Three-dimensional CT was used to measure the inclination and version of the acetabular component, femoral version and the horizontal femoral offset, and the linear wear of the removed acetabular components was measured using a roundness machine. We found that acetabular version and combined version of the acetabular and femoral components were weakly positively correlated with the rate of wear. The acetabular inclination angle was strongly positively correlated with the rate of wear. Femoral version was weakly negatively correlated with the rate of wear. Application of a threshold of >
5 μm/year for the rate of wear in order to separate the revisions into low or high wearing groups showed that more high wearing components were implanted outside Lewinnek’s safe zone, but that this was mainly due to the inclination of the acetabular component, which was the only parameter that significantly differed between the groups. We were unable to show that excess version of the acetabular component alone or combined with femoral version was associated with an increase in the rate of wear based on our assessment of version using CT.
We report the outcome of total hip replacement in 29 failed metal-on-metal resurfacing hip replacements in which the primary surgery was performed between August 1995 and February 2005. The mean length of follow-up was five years (1.7 to 11.7). Of the 29 hip resurfacings, 19 acetabular components and all the femoral components were revised (28 uncemented stems and one cemented stem). There were no deaths and none of the patients was lost to follow-up. None of the hips underwent any further revision. The results of the revision resurfacing group were compared with those of a control group of age-matched patients. In the latter group there were 236 primary total hip replacements and 523 resurfacings performed during the same period by the same surgeons. The outcome of the revision resurfacing group was comparable with that of the stemmed primary hip replacement group but was less good than that of the primary hip resurfacing group. Long-term follow-up is advocated to monitor the outcome of these cases.
The purpose of this study was to evaluate whether concerns about the release of metal ions in metal-on-metal total hip replacements (THR) should be extended to patients with metal-bearing total disc replacements (TDR). Cobalt and chromium levels in whole blood and serum were measured in ten patients with a single-level TDR after a mean follow-up of 34.5 months (13 to 61) using inductively-coupled plasma mass spectrometry. These metal ion levels were compared with pre-operative control levels in 81 patients and with metal ion levels 12 months after metal-on-metal THR (n = 21) and resurfacing hip replacement (n = 36). Flexion-extension radiographs were used to verify movement of the TDR. Cobalt levels in whole blood and serum were significantly lower in the TDR group than in either the THR (p = 0.007) or the resurfacing group (p <
0.001). Both chromium levels were also significantly lower after TDR These results suggest that there is minimal cause for concern about high metal ion concentrations after TDR, as the levels appear to be only moderately elevated. However, spinal surgeons using a metal-on-metal TDR should still be aware of concerns expressed in the hip replacement literature about toxicity from elevated metal ion levels, and inform their patients appropriately.
Cementless acetabular fixation has demonstrated superior long-term durability in total hip replacement, but most series have studied implants with porous metal surfaces. We retrospectively evaluated the results of 100 consecutive patients undergoing total hip replacement where a non-porous Allofit component was used for primary press-fit fixation. This implant is titanium alloy, grit-blasted, with a macrostructure of forged teeth and has a biradial shape. A total of 81 patients (82 hips) were evaluated at final follow-up at a mean of 10.1 years (8.9 to 11.9). The Harris Hip Score improved from a mean 53 points (23 to 73) pre-operatively to a mean of 96 points (78 to 100) at final review. The osseointegration of all acetabular components was radiologically evaluated with no evidence of loosening. The survival rate with revision of the component as the endpoint was 97.5% (95% confidence interval 94 to 100) after 11.9 years. Radiolucency was found in one DeLee-Charnley zone in four acetabular components. None of the implants required revision for aseptic loosening. Two patients were treated for infection, one requiring a two-stage revision of the implant. One femoral stem was revised for osteolysis due to the production of metal wear debris, but the acetabular shell did not require revision. This study demonstrates that a non-porous titanium acetabular component with adjunct surface fixation offers an alternative to standard porous-coated implants.
In a randomised study, 28 patients with a mean age of 62.2 years (32 to 81) with osteoarthritis or avascular necrosis of the hip received either a ceramic-on-ceramic or a metal-on-metal total hip replacement. Apart from the liners the acetabular and femoral components were made of Ti-Al-Nb alloy. The serum aluminium and cobalt levels were measured before, and at one year after surgery. The 15 patients in the ceramic-on-ceramic group had a median pre-operative aluminium level of 1.3 μg/l (0.25 to 8.4) and a cobalt level below the detection limit. At one year the aluminium level was 1.1 μg/l (0.25 to 2.3) and the cobalt level was 0.4 μg/l (0.15 to 0.7). The 13 patients in the metal-on-metal group had a median pre-operative aluminium level of 1.9 μg/l (0.25 to 4.4) and a cobalt level below the detection limit. At one year the median aluminium level was 0.9 μg/l (0.25 to 3.9) whereas the cobalt level was 1.4 μg/l (0.5 to 10.5). This increase in the cobalt level at one year was significant (p <
0.001). Our findings indicate that ceramic-on-ceramic bearings do not cause elevated levels of serum aluminium in the first post-operative year.
Second-generation metal-on-metal bearings were introduced as a response to the considerable incidence of wear-induced failures associated with conventional replacements, especially in young patients. We present the results at ten years of a consecutive series of patients treated using a metal-on-metal hip resurfacing. A distinct feature of the bearings used in our series was that they had been subjected to double-heat treatments during the post-casting phase of their manufacture. In the past these bearings had not been subjected to thermal treatments, making this a unique metal-on-metal bearing which had not been used before in clinical practice. We report the outcome of 184 consecutive hips (160 patients) treated using a hybrid-fixed metal-on-metal hip resurfacing during 1996. Patients were invited for a clinicoradiological follow-up at a minimum of ten years. The Oxford hip score and anteroposterior and lateral radiographs were obtained. The mean age at operation was 54 years (21 to 75). A series of 107 consecutive hips (99 patients) who received the same prosthesis, but subjected to a single thermal treatment after being cast, between March 1994 and December 1995, were used as a control group for comparison. In the 1994 to 1995 group seven patients (seven hips) died from unrelated causes and there were four revisions (4%) for osteolysis and aseptic loosening. In the 1996 group nine patients died at a mean of 6.9 years after operation because of unrelated causes. There were 30 revisions (16%) at a mean of 7.3 years (1.2 to 10.9), one for infection at 1.2 years and 29 for osteolysis and aseptic loosening. Furthermore, in the latter group there were radiological signs of failure in 27 (24%) of the 111 surviving hips. The magnitude of the problem of osteolysis and aseptic loosening in the 1996 cohort did not become obvious until five years after the operation. Our results indicate that double-heat treatments of metal-on-metal bearings can lead to an increased incidence of wear-induced osteolysis.
We report the results of the revision of 123 acetabular components for aseptic loosening treated by impaction bone grafting using frozen, morsellised, irradiated femoral heads and cemented sockets. This is the first large series using this technique to be reported. A survivorship of 88% with revision as the end-point after a mean of five years is comparable with that of other series.
We have undertaken a prospective, randomised study to compare conservation of acetabular bone after total hip replacement and resurfacing arthroplasty of the hip. We randomly assigned 210 hips to one of the two treatment groups. Uncemented, press-fit acetabular components were used for both. No significant difference was found in the mean diameter of acetabular implant inserted in the groups (54.74 mm for total hip replacement and 54.90 mm for resurfacing arthroplasty). In seven resurfacing procedures (6.8%), the surgeon used a larger size of component in order to match the corresponding diameter of the femoral component. With resurfacing arthroplasty, conservation of bone is clearly advantageous on the femoral side. Our study has shown that, with a specific design of acetabular implant and by following a careful surgical technique, removal of bone on the acetabular side is comparable with that of total hip replacement.
We evaluated the concentrations of chromium and cobalt ions in blood after metal-on-metal surface replacement arthroplasty using a wrought-forged, high carbon content chromium-cobalt alloy implant in 64 patients. At one year, mean whole blood ion levels were 1.61 μg/L (0.4 to 5.5) for chromium and 0.67 μg/L (0.23 to 2.09) for cobalt. The pre-operative ion levels, component size, female gender and the inclination of the acetabular component were inversely proportional to the values of chromium and/or cobalt ions at one year postoperatively. Other factors, such as age and level of activity, did not correlate with the levels of metal ions. We found that the levels of the ions in the serum were 1.39 and 1.37 times higher for chromium and cobalt respectively than those in the whole blood. The levels of metal ions obtained may be specific to the hip resurfacing implant and reflect its manufacturing process.
Malposition of the acetabular component is a risk factor for post-operative dislocation after total hip replacement (THR). We have investigated the influence of the orientation of the acetabular component on the probability of dislocation. Radiological anteversion and abduction of the component of 127 hips which dislocated post-operatively were measured by Einzel-Bild-Röentgen-Analysis and compared with those in a control group of 342 patients. In the control group, the mean value of anteversion was 15° and of abduction 44°. Patients with anterior dislocation after primary THR showed significant differences in the mean angle of anteversion (17°), and abduction (48°) as did patients with posterior dislocation (anteversion 11°, abduction 42°). After revision patients with posterior dislocation showed significant differences in anteversion (12°) and abduction (40°). Our results demonstrate the importance of accurate positioning of the acetabular component in order to reduce the frequency of subsequent dislocations. Radiological anteversion of 15° and abduction of 45° are the lowest at-risk values for dislocation.