During hip resurfacing arthroplasty, excessive valgus positioning or surgical technique can result in notching of the femoral neck. Although mechanical weakening and subsequent fracture of the femoral neck are well described, the potential damage to the retinacular vessels leading to an ischaemic event is relatively unknown. Using laser Doppler flowmetry, we measured the blood flow in 14 osteoarthritic femoral heads during routine total hip replacement surgery, before and after notching of the femoral neck. In ten hips there was a reduction in blood flow of more than 50% from the baseline value after simulated notching of the femoral neck. Our results suggest that femoral head vascularity in the osteoarthritic state is similar to the non-arthritic state, where damage to the extraosseous vessels can predispose to avascular necrosis. Surgeons who perform resurfacing arthroplasty of the hip should pay careful attention to these vessels by avoiding excessive dissection around the femoral neck and/or notching.
Open reduction is required following failed conservative treatment
of developmental dysplasia of the hip (DDH). The Ludloff medial
approach is commonly used, but poor results have been reported,
with rates of the development of avascular necrosis (AVN) varying
between 8% and 54%. This retrospective cohort study evaluates the
long-term radiographic and clinical outcome of dislocated hips treated
using this approach. Children with a dislocated hip, younger than one year of age
at the time of surgery, who were treated using a medial approach
were eligible for the study. Radiographs were evaluated for the
degree of dislocation and the presence of an ossific nucleus preoperatively,
and for the degree of AVN and residual dysplasia at one and five
years and at a mean of 12.7 years (4.6 to 20.8) postoperatively.
Radiographic outcome was assessed using the Severin classification,
after five years of age. Further surgical procedures were recorded.
Functional outcome was assessed using the Pediatric Outcomes Data
Collection Instrument (PODCI) or the Hip Disability and Osteoarthritis
Outcome Score (HOOS), depending on the patient’s age.Aims
Patients and Methods
We inserted an electrode up the femoral neck into the femoral head of ten patients undergoing a metal-on-metal hip resurfacing arthroplasty through a posterior surgical approach and measured the oxygen concentration during the operation. In every patient the blood flow was compromised during surgery, but the extent varied. In three patients, the oxygen concentration was zero at the end of the procedure. The surgical approach caused a mean 60% drop (p <
0.005) in oxygen concentration while component insertion led to a further 20% drop (p <
0.04). The oxygen concentration did not improve significantly on wound closure. This study demonstrates that during hip resurfacing arthroplasty, patients experience some compromise to their femoral head blood supply and some have complete disruption.
Surgical dislocation of the hip in the treatment of acetabular fractures allows the femoral head to be safely displaced from the acetabulum. This permits full intra-articular acetabular and femoral inspection for the evaluation and potential treatment of cartilage lesions of the labrum and femoral head, reduction of the fracture under direct vision and avoidance of intra-articular penetration with hardware. We report 60 patients with selected types of acetabular fracture who were treated using this approach. Six were lost to follow-up and the remaining 54 were available for clinical and radiological review at a mean follow-up of 4.4 years (2 to 9). Substantial damage to the intra-articular cartilage was found in the anteromedial portion of the femoral head and the posterosuperior aspect of the acetabulum. Labral lesions were predominantly seen in the posterior acetabular area. Anatomical reduction was achieved in 50 hips (93%) which was considerably higher than that seen in previous reports. There were no cases of avascular necrosis. Four patients subsequently required total hip replacement. Good or excellent results were achieved in 44 hips (81.5%). The cumulative eight-year survivorship was 89.0% (95% confidence interval 84.5 to 94.1). Significant predictors of poor outcome were involvement of the acetabular dome and lesions of the femoral cartilage greater than grade 2. The functional mid-term results were better than those of previous reports. Surgical dislocation of the hip allows accurate reduction and a predictable mid-term outcome in the management of these difficult injuries without the risk of the development of avascular necrosis.
We investigated the factors related to the radiological outcome of a transtrochanteric curved varus osteotomy in patients with osteonecrosis of the hip. We reviewed 73 hips in 62 patients with a mean follow-up of 12.4 years (5 to 31.1). There were 28 men and 34 women, with a mean age of 33.3 years (15 to 68) at the time of surgery. The 73 hips were divided into two groups according to their radiological findings: group 1 showed progression of collapse and/or joint-space narrowing; group 2 had neither progressive collapse nor joint-space narrowing. Both of these factors and the radiological outcomes were analysed by a stepwise discriminant analysis. A total of 12 hips were categorised as group 1 and 61 as group 2. Both the post-operative intact ratio and the localisation of the necrotic lesion correlated with the radiological outcome. The cut-off point of the postoperative intact ratio to prevent the progression of collapse was 33.6%, and the cut-off point to prevent both the progression of collapse and joint-space narrowing was 41.9%. The results of this study indicate that a post-operative intact ratio of 33.0% is necessary if a satisfactory outcome is to be achieved after this varus osteotomy.
This study analysed the clinical and radiological outcome of
anatomical reduction of a moderate or severe stable slipped capital
femoral epiphysis (SCFE) treated by subcapital osteotomy (a modified
Dunn osteotomy) through the surgical approach described by Ganz. We prospectively studied 31 patients (32 hips; 16 females and
five males; mean age 14.3 years) with SCFE. On the Southwick classification,
ten were of moderate severity (head-shaft angle >
30° to 60°) and
22 were severe (head-shaft angle >
60°). Each underwent open reduction
and internal fixation using an intracapsular osteotomy through the
physeal growth plate after safe surgical hip dislocation. Unlike
the conventional procedure, 25 hips did not need an osteotomy of
the apophysis of the great trochanter and were managed using an
extended retinacular posterior flap. Aims
Patients and Methods
We aimed to quantify the relative contributions of the medial
femoral circumflex artery (MFCA) and lateral femoral circumflex
artery (LFCA) to the arterial supply of the head and neck of the
femur. We acquired ten cadaveric pelvises. In each of these, one hip
was randomly assigned as experimental and the other as a matched
control. The MFCA and LFCA were cannulated bilaterally. The hips
were designated LFCA-experimental or MFCA-experimental and underwent
quantitative MRI using a 2 mm slice thickness before and after injection
of MRI-contrast diluted 3:1 with saline (15 ml Gd-DTPA) into either
the LFCA or MFCA. The contralateral control hips had 15 ml of contrast
solution injected into the root of each artery. Next, the MFCA and
LFCA were injected with a mixture of polyurethane and barium sulfate
(33%) and their extra-and intra-arterial course identified by CT
imaging and dissection.Aims
Materials and Methods
In 12 patients, we measured the oxygen concentration in the femoral head-neck junction during hip resurfacing through the anterolateral approach. This was compared with previous measurements made for the posterior approach. For the anterolateral approach, the oxygen concentration was found to be highly dependent upon the position of the leg, which was adjusted during surgery to provide exposure to the acetabulum and femoral head. Gross external rotation of the hip gave a significant decrease in oxygenation of the femoral head. Straightening the limb led to recovery in oxygen concentration, indicating that the blood supply was maintained. The oxygen concentration at the end of the procedure was not significantly different from that at the start. The anterolateral approach appears to produce less disruption to the blood flow in the femoral head-neck junction than the posterior approach for patients undergoing hip resurfacing. This may be reflected subsequently in a lower incidence of fracture of the femoral neck and avascular necrosis.
Metal-on-metal hip resurfacing (MOMHR) is available as an alternative
option for younger, more active patients. There are failure modes
that are unique to MOMHR, which include loosening of the femoral
head and fractures of the femoral neck. Previous studies have speculated
that changes in the vascularity of the femoral head may contribute
to these failure modes. This study compares the survivorship between
the standard posterior approach (SPA) and modified posterior approach
(MPA) in MOMHR. A retrospective clinical outcomes study was performed examining
351 hips (279 male, 72 female) replaced with Birmingham Hip Resurfacing
(BHR, Smith and Nephew, Memphis, Tennessee) in 313 patients with
a pre-operative diagnosis of osteoarthritis. The mean follow-up
period for the SPA group was 2.8 years (0.1 to 6.1) and for the
MPA, 2.2 years (0.03 to 5.2); this difference in follow-up period
was statistically significant (p <
0.01). Survival analysis was
completed using the Kaplan–Meier method. Objectives
Methods
The February 2014 Hip &
Pelvis Roundup360 looks at: length of stay; cementless metaphyseal fixation; mortality trends in over 400,000 total hip replacements; antibiotics in hip fracture surgery; blood supply to the femoral head after dislocation; resurfacing and THR in metal-on-metal replacement; diabetes and hip replacement; bone remodelling over two decades following hip replacement; and whether bisphosphonates affect acetabular fixation.
The February 2014 Research Roundup360 looks at: blood supply to the femoral head after dislocation; diabetes and hip replacement; bone remodelling over two decades following hip replacement; sham surgery as good as arthroscopic meniscectomy; distraction in knee osteoarthritis; whether joint replacement prevent cardiac events; tranexamic acid and knee replacement haemostasis; cartilage colonisation in bipolar ankle grafts; CTs and proof of fusion; atorvastatin for muscle re-innervation after sciatic nerve transection; microfracture and short-term pain in cuff repair; promising early results from L-PRF augmented cuff repairs; and fatty degeneration in a rodent model.
We review the history and literature of hip resurfacing arthroplasty. Resurfacing and the science behind it continues to evolve. Recent results, particularly from the national arthroplasty registers, have spread disquiet among both surgeons and patients. A hip resurfacing arthroplasty is not a total hip replacement, but should perhaps be seen as a means of delaying it. The time when hip resurfacing is offered to a patient may be different from that for a total hip replacement. The same logic can apply to the timing of revision surgery. Consequently, the comparison of resurfacing with total hip replacement may be a false one. Nevertheless, the need for innovative solutions for young arthroplasty patients is clear. Total hip replacement can be usefully delayed in many of these patients by the use of hip resurfacing arthroplasty.
The use of joint-preserving surgery of the hip
has been largely abandoned since the introduction of total hip replacement.
However, with the modification of such techniques as pelvic osteotomy,
and the introduction of intracapsular procedures such as surgical
hip dislocation and arthroscopy, previously unexpected options for
the surgical treatment of sequelae of childhood conditions, including
developmental dysplasia of the hip, slipped upper femoral epiphysis
and Perthes’ disease, have become available. Moreover, femoroacetabular
impingement has been identified as a significant aetiological factor
in the development of osteoarthritis in many hips previously considered to
suffer from primary osteoarthritis. As mechanical causes of degenerative joint disease are now recognised
earlier in the disease process, these techniques may be used to
decelerate or even prevent progression to osteoarthritis. We review
the recent development of these concepts and the associated surgical
techniques. Cite this article:
We report a case of osteonecrosis of the femoral head in a young man who is a carrier of the prothrombin gene mutation. We suggest that an electrical injury to his lower limb may have triggered intravascular thrombosis as a result of this mutation with subsequent osteonecrosis of the femoral head. No case of osteonecrosis of the femoral head secondary to a distant electrical injury has previously been reported.
The cause of fracture of the femoral neck after hip resurfacing is poorly understood. In order to evaluate the role of avascular necrosis we compared 19 femoral heads retrieved at revision for fracture of the femoral neck and 13 retrieved for other reasons. We developed a new technique of assessing avascular necrosis in the femoral head by determining the percentage of empty osteocyte lacunae present. Femoral heads retrieved as controls at total hip replacement for osteoarthritis and avascular necrosis had 9% ( In the fracture group the percentage of empty lacunae was 71% ( We conclude that fracture after resurfacing of the hip is associated with a significantly greater percentage of empty osteocyte lacunae within the trabecular bone. This indicates established avascular necrosis and suggests that damage to the blood supply at the time of surgery is a potent risk factor for fracture of the femoral neck after hip resurfacing.
The outcome of one-stage bilateral open reduction through a medial approach for the treatment of developmental dysplasia of the hip in children under 18 months was studied in 23 children, 18 girls and five boys. Their mean age at operation was 10.1 months (6 to 17) and the mean follow-up was 5.4 years (3 to 8). Acceptable clinical and radiological results were achieved in 44 (95.7%) and 43 (93.5%) of 46 hips, respectively. Excellent results were significantly evident in patients younger than 12 months, those who did not require acetabuloplasty, those whose ossific nucleus had appeared, and in those who did not develop avascular necrosis. One-stage bilateral medial open reduction avoids the need for separate procedures on the hips and has the advantages of accelerated management and shorter immobilisation and rehabilitation than staged operations.
In spite of extensive accounts describing the blood supply to the femoral head, the prediction of avascular necrosis is elusive. Current opinion emphasises the contributions of the superior retinacular artery but may not explain the clinical outcome in many situations, including intramedullary nailing of the femur and resurfacing of the hip. We considered that significant additional contribution to the vascularity of the femoral head may exist. A total of 14 fresh-frozen hips were dissected and the medial circumflex femoral artery was cannulated in the femoral triangle. On the test side, this vessel was ligated, with the femoral head receiving its blood supply from the inferior vincular artery alone. Gadolinium contrast-enhanced MRI was then performed simultaneously on both control and test specimens. Polyurethane was injected, and gross dissection of the specimens was performed to confirm the extraosseous anatomy and the injection of contrast. The inferior vincular artery was found in every specimen and had a significant contribution to the vascularity of the femoral head. The head was divided into four quadrants: medial (0), superior (1), lateral (2) and inferior (3). In our study specimens the inferior vincular artery contributed a mean of 56% (25% to 90%) of blood flow in quadrant 0, 34% (14% to 80%) of quadrant 1, 37% (18% to 48%) of quadrant 2 and 68% (20% to 98%) in quadrant 3. Extensive intra-osseous anastomoses existed between the superior retinacular arteries, the inferior vincular artery and the subfoveal plexus.
The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group. Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.