Advertisement for orthosearch.org.uk
Results 21 - 40 of 502
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1380 - 1385
2 Aug 2021
Kim Y Ryu J Kim JK Al-Dhafer BAA Shin YH

Aims. The aim of this study was to assess arthritis of the basal joint of the thumb quantitatively using bone single-photon emission CT/CT (SPECT/CT) and evaluate its relationship with patients’ pain and function. Methods. We retrospectively reviewed 30 patients (53 hands) with symptomatic basal joint arthritis of the thumb between April 2019 and March 2020. Visual analogue scale (VAS) scores for pain, grip strength, and pinch power of both hands and Patient-Rated Wrist/Hand Evaluation (PRWHE) scores were recorded for all patients. Basal joint arthritis was classified according to the modified Eaton-Glickel stage using routine radiographs and the CT scans of SPECT/CT, respectively. The maximum standardized uptake value (SUVmax) from SPECT/CT was measured in the four peritrapezial joints and the highest uptake was used for analysis. Results. According to Eaton-Glickel classification, 11, 17, 17, and eight hands were stage 0 to I, II, III, and IV, respectively. The interobserver reliability for determining the stage of arthritis was moderate for radiographs (k = 0.41) and substantial for CT scans (k = 0.67). In a binary categorical analysis using SUVmax, pain (p < 0.001) and PRWHE scores (p = 0.004) were significantly higher in hands with higher SUVmax. Using multivariate linear regression to estimate the pain VAS, only SUVmax (B 0.172 (95% confidence interval (CI) 0.065 to 0.279; p = 0.002) showed a significant association. Estimating the variation of PRWHE scores using the same model, only SUVmax (B 1.378 (95% CI, 0.082 to 2.674); p = 0.038) showed a significant association. Conclusion. The CT scans of SPECT/CT provided better interobserver reliability than routine radiographs for evaluating the severity of arthritis. A higher SUVmax in SPECT/CT was associated with more pain and functional disabilities of basal joint arthritis of the thumb. This approach could be used to complement radiographs for the evaluation of patients with this condition. Cite this article: Bone Joint J 2021;103-B(8):1380–1385


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 21 - 28
1 Jan 2023
Ndlovu S Naqshband M Masunda S Ndlovu K Chettiar K Anugraha A

Aims. Clinical management of open fractures is challenging and frequently requires complex reconstruction procedures. The Gustilo-Anderson classification lacks uniform interpretation, has poor interobserver reliability, and fails to account for injuries to musculotendinous units and bone. The Ganga Hospital Open Injury Severity Score (GHOISS) was designed to address these concerns. The major aim of this review was to ascertain the evidence available on accuracy of the GHOISS in predicting successful limb salvage in patients with mangled limbs. Methods. We searched electronic data bases including PubMed, CENTRAL, EMBASE, CINAHL, Scopus, and Web of Science to identify studies that employed the GHOISS risk tool in managing complex limb injuries published from April 2006, when the score was introduced, until April 2021. Primary outcome was the measured sensitivity and specificity of the GHOISS risk tool for predicting amputation at a specified threshold score. Secondary outcomes included length of stay, need for plastic surgery, deep infection rate, time to fracture union, and functional outcome measures. Diagnostic test accuracy meta-analysis was performed using a random effects bivariate binomial model. Results. We identified 1,304 records, of which six prospective cohort studies and two retrospective cohort studies evaluating a total of 788 patients were deemed eligible for inclusion. A diagnostic test meta-analysis conducted on five cohort studies, with 474 participants, showed that GHOISS at a threshold score of 14 has a pooled sensitivity of 93.4% (95% confidence interval (CI) 78.4 to 98.2) and a specificity of 95% (95% CI 88.7 to 97.9) for predicting primary or secondary amputations in people with complex lower limb injuries. Conclusion. GHOISS is highly accurate in predicting success of limb salvage, and can inform management and predict secondary outcomes. However, there is a need for high-quality multicentre trials to confirm these findings and investigate the effectiveness of the score in children, and in predicting secondary amputations. Cite this article: Bone Joint J 2023;105-B(1):21–28


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 696 - 701
1 Jun 2023
Kurisunkal V Morris G Kaneuchi Y Bleibleh S James S Botchu R Jeys L Parry MC

Aims. Intra-articular (IA) tumours around the knee are treated with extra-articular (EA) resection, which is associated with poor functional outcomes. We aim to evaluate the accuracy of MRI in predicting IA involvement around the knee. Methods. We identified 63 cases of high-grade sarcomas in or around the distal femur that underwent an EA resection from a prospectively maintained database (January 1996 to April 2020). Suspicion of IA disease was noted in 52 cases, six had IA pathological fracture, two had an effusion, two had prior surgical intervention (curettage/IA intervention), and one had an osseous metastasis in the proximal tibia. To ascertain validity, two musculoskeletal radiologists (R1, R2) reviewed the preoperative imaging (MRI) of 63 consecutive cases on two occasions six weeks apart. The radiological criteria for IA disease comprised evidence of tumour extension within the suprapatellar pouch, intercondylar notch, extension along medial/lateral retinaculum, and presence of IA fracture. The radiological predictions were then confirmed with the final histopathology of the resected specimens. Results. The resection histology revealed 23 cases (36.5%) showing IA disease involvement compared with 40 cases without (62%). The intraobserver variability of R1 was 0.85 (p < 0.001) compared to R2 with κ = 0.21 (p = 0.007). The interobserver variability was κ = 0.264 (p = 0.003). Knee effusion was found to be the most sensitive indicator of IA involvement, with a sensitivity of 91.3% but specificity of only 35%. However, when combined with a pathological fracture, this rose to 97.5% and 100% when disease was visible in Hoffa’s fat pad. Conclusion. MRI imaging can sometimes overestimate IA joint involvement and needs to be correlated with clinical signs. In the light of our findings, we would recommend EA resections when imaging shows effusion combined with either disease in Hoffa’s fat pad or retinaculum, or pathological fractures. Cite this article: Bone Joint J 2023;105-B(6):696–701


Bone & Joint Open
Vol. 3, Issue 10 | Pages 826 - 831
28 Oct 2022
Jukes C Dirckx M Bellringer S Chaundy W Phadnis J

Aims. The conventionally described mechanism of distal biceps tendon rupture (DBTR) is of a ‘considerable extension force suddenly applied to a resisting, actively flexed forearm’. This has been commonly paraphrased as an ‘eccentric contracture to a flexed elbow’. Both definitions have been frequently used in the literature with little objective analysis or citation. The aim of the present study was to use video footage of real time distal biceps ruptures to revisit and objectively define the mechanism of injury. Methods. An online search identified 61 videos reporting a DBTR. Videos were independently reviewed by three surgeons to assess forearm rotation, elbow flexion, shoulder position, and type of muscle contraction being exerted at the time of rupture. Prospective data on mechanism of injury and arm position was also collected concurrently for 22 consecutive patients diagnosed with an acute DBTR in order to corroborate the video analysis. Results. Four videos were excluded, leaving 57 for final analysis. Mechanisms of injury included deadlift, bicep curls, calisthenics, arm wrestling, heavy lifting, and boxing. In all, 98% of ruptures occurred with the arm in supination and 89% occurred at 0° to 10° of elbow flexion. Regarding muscle activity, 88% occurred during isometric contraction, 7% during eccentric contraction, and 5% during concentric contraction. Interobserver correlation scores were calculated as 0.66 to 0.89 using the free-marginal Fleiss Kappa tool. The prospectively collected patient data was consistent with the video analysis, with 82% of injuries occurring in supination and 95% in relative elbow extension. Conclusion. Contrary to the classically described injury mechanism, in this study the usual arm position during DBTR was forearm supination and elbow extension, and the muscle contraction was typically isometric. This was demonstrated for both video analysis and ‘real’ patients across a range of activities leading to rupture. Cite this article: Bone Jt Open 2022;3(10):826–831


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1041 - 1047
1 Aug 2020
Hamoodi Z Singh J Elvey MH Watts AC

Aims. The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system. Methods. This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings. Results. Of the 48 patients, three (6%) had type A injury, 11 (23%) type B, 16 (33%) type B+, 16 (33%) Type C, two (4%) type D+, and none had a type D injury. All 48 patients had anteroposterior (AP) and lateral radiographs, 44 had 2D CT scans, and 39 had 3D reconstructions. The interobserver reliability kappa value was 0.52 for radiographs, 0.71 for 2D CT scans, and 0.73 for a combination of 2D and 3D reconstruction CT scans. The median intraobserver reliability was 0.75 (interquartile range (IQR) 0.62 to 0.79) for radiographs, 0.77 (IQR 0.73 to 0.94) for 2D CT scans, and 0.89 (IQR 0.77 to 0.93) for the combination of 2D and 3D reconstruction. Validity analysis showed that accuracy significantly improved when using CT scans (p = 0.018 and p = 0.028 respectively). Conclusion. The Wrightington classification system is a reliable and valid method of classifying fracture-dislocations of the elbow. CT scans are significantly more accurate than radiographs when identifying the pattern of injury, with good intra- and interobserver reproducibility. Cite this article: Bone Joint J 2020;102-B(8):1041–1047


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated. Results. Mean measurement errors of the image-matching analyses were significantly small (2.5° (SD 1.4°) and 0.1° (SD 0.9°) in the RA and RI, respectively) relative to those of the 2D measurements. Intra- and interobserver differences were similarly small from the clinical perspective. Conclusion. We have developed a computational analysis of acetabular component orientation using an image-matching technique with small measurement errors compared to visual evaluations regardless of the pelvic tilt or rotation. Cite this article: Bone Joint Res 2020;9(7):360–367


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 102 - 107
1 Jan 2020
Sharma N Brown A Bouras T Kuiper JH Eldridge J Barnett A

Aims. Trochlear dysplasia is a significant risk factor for patellofemoral instability. The Dejour classification is currently considered the standard for classifying trochlear dysplasia, but numerous studies have reported poor reliability on both plain radiography and MRI. The severity of trochlear dysplasia is important to establish in order to guide surgical management. We have developed an MRI-specific classification system to assess the severity of trochlear dysplasia, the Oswestry-Bristol Classification (OBC). This is a four-part classification system comprising normal, mild, moderate, and severe to represent a normal, shallow, flat, and convex trochlear, respectively. The purpose of this study was to assess the inter- and intraobserver reliability of the OBC and compare it with that of the Dejour classification. Methods. Four observers (two senior and two junior orthopaedic surgeons) independently assessed 32 CT and axial MRI scans for trochlear dysplasia and classified each according to the OBC and the Dejour classification systems. Assessments were repeated following a four-week interval. The inter- and intraobserver agreement was determined by using Fleiss’ generalization of Cohen’s kappa statistic and S-statistic nominal and linear weights. Results. The OBC showed fair-to-good interobserver agreement and good-to-excellent intraobserver agreement (mean kappa 0.68). The Dejour classification showed poor interobserver agreement and fair-to-good intraobserver agreement (mean kappa 0.52). Conclusion. The OBC can be used to assess the severity of trochlear dysplasia. It can be applied in clinical practice to simplify and standardize surgical decision-making in patients with recurrent patella instability. Cite this article: Bone Joint J 2020;102-B(1):102–107


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 596 - 602
1 May 2018
Bock P Pittermann M Chraim M Rois S

Aims. Various radiological parameters are used to evaluate a flatfoot deformity and their measurements may differ. The aims of this study were to answer the following questions: 1) Which of the 11 parameters have the best inter- and intraobserver reliability in a standardized radiological setting? 2) Are pre- and postoperative assessments equally reliable? 3) What are the identifiable sources of variation?. Patients and Methods. Measurements of the 11 parameters were recorded on anteroposterior and lateral weight-bearing radiographs of 38 feet before and after surgery for flatfoot, by three observers with different experience in foot surgery (A, ten years; B, three years; C, third-year orthopaedic resident). The inter- and intraobserver reliability was calculated. Results. Preoperative interobserver reliability was high for four, moderate for five, and low for two parameters. Postoperative interobserver reliability was high for four, moderate for five, and low for two parameters. Intraobserver reliability was excellent for all parameters preoperatively as recorded by observer A (PB) and B (MP), and for eight parameters as recorded by observer C (SR). Intraobserver reliability was excellent for ten parameters postoperatively as recorded by observer A and B, and for eight parameters as recorded by observer C. Conclusion. The following parameters can be recommended. For preoperative and postoperative evaluation of flatfoot: anteroposterior, talonavicular coverage angle; lateral, talometatarsal I angle, calcaneal pitch angle, and cuneiform-medial height (high interobserver reliability); and anteroposterior, talometatarsal II angle; lateral, talocalcaneal angle,tibiocalcaneal angle (moderate interobserver reliability). For more experienced observers, we also recommend the anteroposterior talometatarsal I angle (moderate reliability). The inter- and intraobserver reliability for most parameters were similar pre- and postoperatively. The experience of the observer and the definition and ability to measure the parameters themselves were sources of variation. Cite this article: Bone Joint J 2018;100-B:596–602


Bone & Joint Open
Vol. 3, Issue 5 | Pages 423 - 431
1 May 2022
Leong JWY Singhal R Whitehouse MR Howell JR Hamer A Khanduja V Board TN

Aims. The aim of this modified Delphi process was to create a structured Revision Hip Complexity Classification (RHCC) which can be used as a tool to help direct multidisciplinary team (MDT) discussions of complex cases in local or regional revision networks. Methods. The RHCC was developed with the help of a steering group and an invitation through the British Hip Society (BHS) to members to apply, forming an expert panel of 35. We ran a mixed-method modified Delphi process (three rounds of questionnaires and one virtual meeting). Round 1 consisted of identifying the factors that govern the decision-making and complexities, with weighting given to factors considered most important by experts. Participants were asked to identify classification systems where relevant. Rounds 2 and 3 focused on grouping each factor into H1, H2, or H3, creating a hierarchy of complexity. This was followed by a virtual meeting in an attempt to achieve consensus on the factors which had not achieved consensus in preceding rounds. Results. The expert group achieved strong consensus in 32 out of 36 factors following the Delphi process. The RHCC used the existing Paprosky (acetabulum and femur), Unified Classification System, and American Society of Anesthesiologists (ASA) classification systems. Patients with ASA grade III/IV are recognized with a qualifier of an asterisk added to the final classification. The classification has good intraobserver and interobserver reliability with Kappa values of 0.88 to 0.92 and 0.77 to 0.85, respectively. Conclusion. The RHCC has been developed through a modified Delphi technique. RHCC will provide a framework to allow discussion of complex cases as part of a local or regional hip revision MDT. We believe that adoption of the RHCC will provide a comprehensive and reproducible method to describe each patient’s case with regard to surgical complexity, in addition to medical comorbidities that may influence their management. Cite this article: Bone Jt Open 2022;3(5):423–431


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 301 - 309
1 Mar 2020
Keenan OJF Holland G Maempel JF Keating JF Scott CEH

Aims. Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. Methods. A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient. Results. Knees had a mean of 6.8 regions of FTCL (SD 3.1), most common medially. The commonest patterns of FTCL were medial ± patellofemoral (143/300, 48%) and tricompartmental (89/300, 30%). ACL status was associated with pattern of FTCL (p = 0.023). All radiological classification systems demonstrated moderate ICC, but this was highest for the IKDC: whole knee 0.68 (95% confidence interval (CI) 0.60 to 0.74); medial compartment 0.84 (95% CI 0.80 to 0.87); and lateral compartment 0.79 (95% CI 0.73 to 0.83). Correlation with actual FTCL was strongest for Ahlbäck (Spearman rho 0.27 to 0.39) and KL (0.30 to 0.33) systems, although all systems demonstrated medium correlation. The Ahlbäck score was the most discriminating in severe knee OA. Osteophyte presence in the medial compartment had high positive predictive value (PPV) for FTCL, but not in the lateral compartment. Conclusion. The Ahlbäck and KL systems had the highest correlation with confirmed cartilage loss at TKA. However, the IKDC system displayed the best interobserver reliability, with favourable correlation with FTCL in medial and lateral compartments, although it was less discriminating in more severe disease. Cite this article: Bone Joint J 2020;102-B(3):301–309


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1662 - 1668
1 Nov 2021
Bhanushali A Chimutengwende-Gordon M Beck M Callary SA Costi K Howie DW Solomon LB

Aims. The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements. Methods. Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable. Results. Analysis of supine and standing radiographs resulted in significant variation for measurements of PT (p < 0.001) and AC (p = 0.005). The variation in PT correlated with the variation in AC in a limited number of patients (R. 2. = 0.378; p = 0.012). Conclusion. The significant variation in PT and AC between supine and standing radiographs suggests that it may benefit surgeons to have both radiographs when planning surgical correction of hip dysplasia. We also recommend using PACS-derived measurements of AI and SA due to the poor interobserver error on Hip2Norm. Cite this article: Bone Joint J 2021;103-B(11):1662–1668


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims. Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. Methods. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis. Results. Although there were differences in the number of males and females in each group, no significant sex bias was noted (p = 0.080). Furthermore, there was no significant difference in age (p = 0.910) or baseline lumbar bone mineral density (BMD) (p = 0.998) found between any of the groups (pressfit, cemented, or trabecular). The pressfit implant initially behaved like the trabecular component with an immediate fall in BMD in the inferior and medial regions, with preserved BMD laterally, suggesting lateral rim loading. However, the pressfit component subsequently showed a reversal in BMD medially with recovery back towards baseline, and a continued rise in lateral BMD. This would suggest that the pressfit component begins to reload the medial bone over time, more akin to the cemented component. Analysis of postoperative radiographs revealed no pressfit component subsidence or movement up to two years postoperatively (100% interobserver reliability). Medial defects seen immediately postoperatively in five cases had completely resolved by two years in four patients. Conclusion. Initially, the uncemented monoblock component behaved similarly to the rigid trabecular metal component with lateral rim loading; however, over two years this changed to more closely resemble the loading pattern of a cemented polyethylene component with increasing medial pelvic loading. This indicates that the uncemented monoblock acetabular component may result in optimized fixation and preservation of retroacetabular bone stock. Cite this article: Bone Joint J 2021;103-B(5):872–880


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1300 - 1306
1 Oct 2019
Oliver WM Smith TJ Nicholson JA Molyneux SG White TO Clement ND Duckworth AD

Aims. The primary aim of this study was to develop a reliable, effective radiological score to assess the healing of humeral shaft fractures, the Radiographic Union Score for HUmeral fractures (RUSHU). The secondary aim was to assess whether the six-week RUSHU was predictive of nonunion at six months after the injury. Patients and Methods. Initially, 20 patients with radiographs six weeks following a humeral shaft fracture were selected at random from a trauma database and scored by three observers, based on the Radiographic Union Scale for Tibial fractures system. After refinement of the RUSHU criteria, a second group of 60 patients with radiographs six weeks after injury, 40 with fractures that united and 20 with fractures that developed nonunion, were scored by two blinded observers. Results. After refinement, the interobserver intraclass correlation coefficient (ICC) was 0.79 (95% confidence interval (CI) 0.67 to 0.87), indicating substantial agreement. At six weeks after injury, patients whose fractures united had a significantly higher median score than those who developed nonunion (10 vs 7; p < 0.001). A receiver operating characteristic curve determined that a RUSHU cut-off of < 8 was predictive of nonunion (area under the curve = 0.84, 95% CI 0.74 to 0.94). The sensitivity was 75% and specificity 80% with a positive predictive value (PPV) of 65% and a negative predictive value of 86%. Patients with a RUSHU < 8 (n = 23) were more likely to develop nonunion than those with a RUSHU ≥ 8 (n = 37, odds ratio 12.0, 95% CI 3.4 to 42.9). Based on a PPV of 65%, if all patients with a RUSHU < 8 underwent fixation, the number of procedures needed to avoid one nonunion would be 1.5. Conclusion. The RUSHU is reliable and effective in identifying patients at risk of nonunion of a humeral shaft fracture at six weeks after injury. This tool requires external validation but could potentially reduce the morbidity associated with delayed treatment of an established nonunion. Cite this article: Bone Joint J 2019;101-B:1300–1306


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 593 - 599
1 May 2020
Amanatullah DF Cheng RZ Huddleston III JI Maloney WJ Finlay AK Kappagoda S Suh GA Goodman SB

Aims. To establish the utility of adding the laboratory-based synovial alpha-defensin immunoassay to the traditional diagnostic work-up of a prosthetic joint infection (PJI). Methods. A group of four physicians evaluated 158 consecutive patients who were worked up for PJI, of which 94 underwent revision arthroplasty. Each physician reviewed the diagnostic data and decided on the presence of PJI according to the 2014 Musculoskeletal Infection Society (MSIS) criteria (yes, no, or undetermined). Their initial randomized review of the available data before or after surgery was blinded to each alpha-defensin result and a subsequent randomized review was conducted with each result. Multilevel logistic regression analysis assessed the effect of having the alpha-defensin result on the ability to diagnose PJI. Alpha-defensin was correlated to the number of synovial white blood cells (WBCs) and percentage of polymorphonuclear cells (%PMN). Results. Intraobserver reliability and interobserver agreement did not change when the alpha-defensin result was available. Positive alpha-defensin results had greater synovial WBCs (mean 31,854 cells/μL, SD 32,594) and %PMN (mean 93.0%, SD 5.5%) than negative alpha-defensin results (mean 974 cells/μL, SD 3,988; p < 0.001 and mean 39.4% SD 28.6%; p < 0.001). Adding the alpha-defensin result did not alter the diagnosis of a PJI using preoperative (odds ratio (OR) 0.52, 95% confidence interval (CI) 0.14 to 1.88; p = 0.315) or operative (OR 0.52, CI 0.18 to 1.55; p = 0.242) data when clinicians already decided that PJI was present or absent with traditionally available testing. However, when undetermined with traditional preoperative testing, alpha-defensin helped diagnose (OR 0.44, CI 0.30 to 0.64; p < 0.001) or rule out (OR 0.41, CI 0.17 to 0.98; p = 0.044) PJI. Of the 27 undecided cases with traditional testing, 24 (89%) benefited from the addition of alpha-defensin testing. Conclusion. The laboratory-based synovial alpha-defensin immunoassay did not help diagnose or rule out a PJI when added to routine serologies and synovial fluid analyses except in cases where the diagnosis of PJI was unclear. We recommend against the routine use of alpha-defensin and suggest using it only when traditional testing is indeterminate. Cite this article: Bone Joint J 2020;102-B(5):593–599


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1578 - 1584
1 Dec 2019
Batailler C Weidner J Wyatt M Pfluger D Beck M

Aims. A borderline dysplastic hip can behave as either stable or unstable and this makes surgical decision making challenging. While an unstable hip may be best treated by acetabular reorientation, stable hips can be treated arthroscopically. Several imaging parameters can help to identify the appropriate treatment, including the Femoro-Epiphyseal Acetabular Roof (FEAR) index, measured on plain radiographs. The aim of this study was to assess the reliability and the sensitivity of FEAR index on MRI compared with its radiological measurement. Patients and Methods. The technique of measuring the FEAR index on MRI was defined and its reliability validated. A retrospective study assessed three groups of 20 patients: an unstable group of ‘borderline dysplastic hips’ with lateral centre edge angle (LCEA) less than 25° treated successfully by periacetabular osteotomy; a stable group of ‘borderline dysplastic hips’ with LCEA less than 25° treated successfully by impingement surgery; and an asymptomatic control group with LCEA between 25° and 35°. The following measurements were performed on both standardized radiographs and on MRI: LCEA, acetabular index, femoral anteversion, and FEAR index. Results. The FEAR index showed excellent intraobserver and interobserver reliability on both MRI and radiographs. The FEAR index was more reliable on radiographs than on MRI. The FEAR index on MRI was lower in the stable borderline group (mean -4.2° (. sd. 9.1°)) compared with the unstable borderline group (mean 7.9° (. sd. 6.8°)). With a FEAR index cut-off value of 2°, 90% of patients were correctly identified as stable or unstable using the radiological FEAR index, compared with 82.5% using the FEAR index on MRI. The FEAR index was a better predictor of instability on plain radiographs than on MRI. Conclusion. The FEAR index measured on MRI is less reliable and less sensitive than the FEAR index measured on radiographs. The cut-off value of 2° for radiological FEAR index predicted hip stability with 90% probability. Cite this article: Bone Joint J 2019;101-B:1578–1584


Bone & Joint Research
Vol. 2, Issue 1 | Pages 1 - 8
1 Jan 2013
Costa AJ Lustig S Scholes CJ Balestro J Fatima M Parker DA

Objectives. There remains a lack of data on the reliability of methods to estimate tibial coverage achieved during total knee replacement. In order to address this gap, the intra- and interobserver reliability of a three-dimensional (3D) digital templating method was assessed with one symmetric and one asymmetric prosthesis design. Methods. A total of 120 template procedures were performed according to specific rotational and over-hang criteria by three observers at time zero and again two weeks later. Total and sub-region coverage were calculated and the reliability of the templating and measurement method was evaluated. Results. Excellent intra- and interobserver reliability was observed for total coverage, when minimal component overhang (intraclass correlation coefficient (ICC) = 0.87) or no component overhang (ICC = 0.92) was permitted, regardless of rotational restrictions. Conclusions. Measurement of tibial coverage can be reliable using the templating method described even if the rotational axis selected still has a minor influence


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1191 - 1196
1 Sep 2009
Pagenstert GI Barg A Leumann AG Rasch H Müller-Brand J Hintermann B Valderrabano V

The precise localisation of osteoarthritic changes is crucial for selective surgical treatment. Single photon-emission CT-CT (SPECT-CT) combines both morphological and biological information. We hypothesised that SPECT-CT increased the intra- and interobserver reliability to localise increased uptake compared with traditional evaluation of CT and bone scanning together. We evaluated 20 consecutive patients with pain of uncertain origin in the foot and ankle by radiography and SPECT-CT, available as fused SPECT-CT, and by separate bone scanning and CT. Five observers assessed the presence or absence of arthritis. The images were blinded and randomly ordered. They were evaluated twice at an interval of six weeks. Kappa and multirater kappa values were calculated. The mean intraobserver reliability for SPECT-CT was excellent (κ = 0.86; 95% CI 0.81 to 0.88) and significantly higher than that for CT and bone scanning together. SPECT-CT had significantly higher interobserver agreement, especially when evaluating the naviculocuneiform and tarsometatarsal joints. SPECT-CT is useful in localising active arthritis especially in areas where the number and configuration of joints are complex


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 766 - 771
1 Jun 2009
Brunner A Honigmann P Treumann T Babst R

We evaluated the impact of stereo-visualisation of three-dimensional volume-rendering CT datasets on the inter- and intraobserver reliability assessed by kappa values on the AO/OTA and Neer classifications in the assessment of proximal humeral fractures. Four independent observers classified 40 fractures according to the AO/OTA and Neer classifications using plain radiographs, two-dimensional CT scans and with stereo-visualised three-dimensional volume-rendering reconstructions. Both classification systems showed moderate interobserver reliability with plain radiographs and two-dimensional CT scans. Three-dimensional volume-rendered CT scans improved the interobserver reliability of both systems to good. Intraobserver reliability was moderate for both classifications when assessed by plain radiographs. Stereo visualisation of three-dimensional volume rendering improved intraobserver reliability to good for the AO/OTA method and to excellent for the Neer classification. These data support our opinion that stereo visualisation of three-dimensional volume-rendering datasets is of value when analysing and classifying complex fractures of the proximal humerus


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 629 - 633
1 May 2011
Hirschmann MT Konala P Amsler F Iranpour F Friederich NF Cobb JP

We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose. A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p < 0.001). 3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice