Advertisement for orthosearch.org.uk
Results 21 - 40 of 250
Results per page:
Bone & Joint 360
Vol. 13, Issue 2 | Pages 44 - 46
1 Apr 2024

The April 2024 Research Roundup. 360. looks at: Prevalence and characteristics of benign cartilaginous tumours of the shoulder joint; Is total-body MRI useful as a screening tool to rule out malignant progression in patients with multiple osteochondromas?; Effects of vancomycin and tobramycin on compressive and tensile strengths of antibiotic bone cement: a biomechanical study; Biomarkers for early detection of Charcot arthropathy; Strong association between growth hormone therapy and proximal tibial physeal avulsion fractures in children and adolescents; UK pregnancy in orthopaedics (UK-POP): a cross-sectional study of UK female trauma and orthopaedic surgeons and their experiences of pregnancy; Does preoperative weight loss change the risk of adverse outcomes in total knee arthroplasty by initial BMI classification?


Bone & Joint Research
Vol. 11, Issue 12 | Pages 873 - 880
1 Dec 2022
Watanabe N Miyatake K Takada R Ogawa T Amano Y Jinno T Koga H Yoshii T Okawa A

Aims. Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related biomarkers between patients treated and untreated for osteoporosis. Methods. This single-centre retrospective study included 398 hip joints of patients who underwent THA. Using medical records, we examined preoperative bone mineral density measures of the hip and lumbar spine using dual energy X-ray absorptiometry (DXA) scans and the medications used to treat osteoporosis at the time of admission. We also assessed the following osteoporosis-related biomarkers: tartrate-resistant acid phosphatase 5b (TRACP-5b); total procollagen type 1 amino-terminal propeptide (total P1NP); intact parathyroid hormone; and homocysteine. Results. The prevalence of DXA-proven hip osteoporosis (T-score ≤ -2.5) among THA patients was 8.8% (35 of 398). The spinal osteoporosis prevalence rate was 4.5% (18 of 398), and 244 patients (61.3%; 244 of 398) had osteopenia (-2.5 < T-score ≤ -1) or osteoporosis of either the hip or spine. The rate of pharmacological osteoporosis treatment was 22.1% (88 of 398). TRACP-5b was significantly lower in the osteoporosis-treated group than in the untreated group (p < 0.001). Conclusion. Osteoporosis is common in patients undergoing THA, but the diagnosis and treatment for osteoporosis were insufficient. The lower TRACP-5b levels in the osteoporosis-treated group — that is, osteoclast suppression — may contribute to the reduction of the postoperative revision rate after THA. Cite this article: Bone Joint Res 2022;11(12):873–880


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1033 - 1037
1 Oct 2023
Mancino F Gabr A Plastow R Haddad FS

The anterior cruciate ligament (ACL) is frequently injured in elite athletes, with females up to eight times more likely to suffer an ACL tear than males. Biomechanical and hormonal factors have been thoroughly investigated; however, there remain unknown factors that need investigation. The mechanism of injury differs between males and females, and anatomical differences contribute significantly to the increased risk in females. Hormonal factors, both endogenous and exogenous, play a role in ACL laxity and may modify the risk of injury. However, data are still limited, and research involving oral contraceptives is potentially associated with methodological and ethical problems. Such characteristics can also influence the outcome after ACL reconstruction, with higher failure rates in females linked to a smaller diameter of the graft, especially in athletes aged < 21 years. The addition of a lateral extra-articular tenodesis can improve the outcomes after ACL reconstruction and reduce the risk of failure, and it should be routinely considered in young elite athletes. Sex-specific environmental differences can also contribute to the increased risk of injury, with more limited access to and availablility of advanced training facilities for female athletes. In addition, football kits are designed for male players, and increased attention should be focused on improving the quality of pitches, as female leagues usually play the day after male leagues. The kit, including boots, the length of studs, and the footballs themselves, should be tailored to the needs and body shapes of female athletes. Specific physiotherapy programmes and training protocols have yielded remarkable results in reducing the risk of injury, and these should be extended to school-age athletes. Finally, psychological factors should not be overlooked, with females’ greater fear of re-injury and lack of confidence in their knee compromising their return to sport after ACL injury. Both intrinsic and extrinsic factors should be recognized and addressed to optimize the training programmes which are designed to prevent injury, and improve our understanding of these injuries. Cite this article: Bone Joint J 2023;105-B(10):1033–1037


Bone & Joint Research
Vol. 10, Issue 10 | Pages 659 - 667
1 Oct 2021
Osagie-Clouard L Meeson R Sanghani-Kerai A Bostrom M Briggs T Blunn G

Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing. Methods. A 1.5 mm femoral osteotomy (delayed union model) was created in 48 female juvenile Wistar rats, aged six to nine months, and stabilized using an external fixator. At day 0, animals were treated with intrafracture injections of 1 × 10. 6. cells/kg bone marrow mesenchymal stem cells (MSCs) suspended in fibrin, daily subcutaneous injections of high (100 μg/kg) or low (25 μg/kg) dose PTH 1-34, or a combination of PTH and MSCs. A group with an empty gap served as a control. Five weeks post-surgery, the femur was excised for radiological, histomorphometric, micro-CT, and mechanical analysis. Results. Combination therapy treatment led to increased callus formation compared to controls. In the high-dose combination group there was significantly greater mineralized tissue volume and trabecular parameters compared to controls (p = 0.039). This translated to significantly improved stiffness (and ultimate load to failure (p = 0.049). The high-dose combination therapy group had the most significant improvement in mean modified Radiographic Union Score for Tibia fractures (RUST) compared to controls (13.8 (SD 1.3) vs 5.8 (SD 0.5)). All groups demonstrated significant increases in the radiological scores – RUST and Allen score – histologically compared to controls. Conclusion. We demonstrate the beneficial effect of localized MSC injections on fracture healing combined with low- or high-dose teriparatide, with efficacy dependent on PTH dose. Cite this article: Bone Joint Res 2021;10(10):659–667


Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims. Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2. -/-. ) display accelerated bone growth. Methods. We examined vulnerability of Socs2. -/-. mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. Results. We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2. -/-. in comparison with WT. Histological examination of WT and Socs2. -/-. knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2. -/-. mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2. -/-. , in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. Conclusion. Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162–170


Bone & Joint Research
Vol. 6, Issue 7 | Pages 452 - 463
1 Jul 2017
Wang G Sui L Gai P Li G Qi X Jiang X

Objectives. Osteoporosis has become an increasing concern for older people as it may potentially lead to osteoporotic fractures. This study is designed to assess the efficacy and safety of ten therapies for post-menopausal women using network meta-analysis. Methods. We conducted a systematic search in several databases, including PubMed and Embase. A random-effects model was employed and results were assessed by the odds ratio (OR) and corresponding 95% confidence intervals (CI). Furthermore, with respect to each outcome, each intervention was ranked according to the surface under the cumulative ranking curve (SUCRA) value. Results. With respect to preventing new vertebral fractures (NVF), all ten drugs outperformed placebo, and etidronate proved to be the most effective treatment (OR 0.24, 95% CI 0.14 to 0.39). In addition, zoledronic acid and parathyroid hormone ranked higher compared with the other drugs. With respect to preventing clinical vertebral fractures (CVF), zoledronic acid proved to be the most effective drug (OR = 0.25, 95% CI 0.08 to 0.92), with denosumab as a desirable second option (OR = 0.48, 95% CI 0.22 to 0.96), when both were compared with placebo. As for adverse events (AE) and severe adverse events (SAE), no significant difference was observed. According to SUCRA, etidronate ranked first in preventing CVF; parathyroid hormone and zoledronic acid ranked highly in preventing NVF and CVF. Raloxifene was safe with a high rank in preventing AEs and SAEs though performed unsatisfactorily in efficacy. Conclusions. This study suggests that, taking efficacy and safety into account, parathyroid hormone and zoledronic acid had the highest probability of satisfactory performance in preventing osteoporotic fractures. Cite this article: G. Wang, L. Sui, P. Gai, G. Li, X. Qi, X. Jiang. The efficacy and safety of vertebral fracture prevention therapies in post-menopausal osteoporosis treatment: Which therapies work best? a network meta-analysis. Bone Joint Res 2017;6:452–463. DOI: 10.1302/2046-3758.67.BJR-2016-0292.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1249 - 1251
1 Sep 2009
Huang K Yang R Hsieh C

Breast cancer is generally managed surgically with adjuvant agents which include hormone therapy, chemotherapy, radiotherapy and bisphosphonate therapy. However, some of these adjuvant therapies may cause adverse events, including wound infection, neutropenia, bone marrow suppression and fever. The simultaneous presentation of osteonecrosis and osteomyelitis has not previously been described in patients with breast cancer undergoing hormone therapy and chemotherapy. We report a patient with breast cancer who developed bone infarcts in both legs as well as osteomyelitis in the right distal tibia after treatment which included a modified radical mastectomy, hormone therapy and chemotherapy. Simultaneous osteonecrosis and osteomyelitis should be considered in patients with breast cancer who are receiving chemotherapy and hormone therapy who present with severe bone pain, especially if there have been infective episodes during treatment


Bone & Joint Research
Vol. 4, Issue 3 | Pages 38 - 44
1 Mar 2015
Thornton GM Reno CR Achari Y Morck DW Hart DA

Objectives. Ligaments which heal spontaneously have a healing process that is similar to skin wound healing. Menopause impairs skin wound healing and may likewise impair ligament healing. Our purpose in this study was to investigate the effect of surgical menopause on ligament healing in a rabbit medial collateral ligament model. Methods. Surgical menopause was induced with ovariohysterectomy surgery in adult female rabbits. Ligament injury was created by making a surgical gap in the midsubstance of the medial collateral ligament. Ligaments were allowed to heal for six or 14 weeks in the presence or absence of oestrogen before being compared with uninjured ligaments. Molecular assessment examined the messenger ribonucleic acid levels for collagens, proteoglycans, proteinases, hormone receptors, growth factors and inflammatory mediators. Mechanical assessments examined ligament laxity, total creep strain and failure stress. Results. Surgical menopause in normal medial collateral ligaments initiated molecular changes in all the categories evaluated. In early healing medial collateral ligaments, surgical menopause resulted in downregulation of specific collagens, proteinases and inflammatory mediators at 6 weeks of healing, and proteoglycans, growth factors and hormone receptors at 14 weeks of healing. Surgical menopause did not produce mechanical changes in normal or early healing medial collateral ligaments. With or without surgical menopause, healing ligaments exhibited increased total creep strain and decreased failure stress compared with uninjured ligaments. Conclusions. Surgical menopause did not affect the mechanical properties of normal or early healing medial collateral ligaments in a rabbit model. The results in this preclinical model suggest that menopause may result in no further impairment to the ligament healing process. . Cite this article: Bone Joint Res 2015;4:38–44


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 3 | Pages 453 - 463
1 Aug 1962
Casuccio C

Relating the results of our investigations to the knowledge hitherto acquired about the etiology of osteoporosis (which I have already referred to), I am inclined to interpret the pathogenesis of osteoporosis in the following way: 1) Primary osteoblastic deficiency: congenital (Lobstein); involutive (senile osteoporosis?); 2) Reduced osteoblastic activity from absence of trophic stimuli: (inactivity, ovarian agenesia, eunuchoidism, menopause); 3) Reduced osteoblastic activity from inhibitory stimuli: (cortisone, adrenocorticotrophic hormone (A.C.T.H.), stress, Cushing's disease, thyrotoxicosis); 4) Normal osteoblastic activity but insufficiency of constructive material: (malnutrition, disturbances of the digestive system, insufficiency of vitamin C, diabetes, thyrotoxicosis, cortisone, A.C.T.H., stress, Cushing's disease). Osteoporosis may therefore be the consequence either of a congenital osteoblastic deficiency, such as that found in cases of osteogenesis imperfecta, or of reduced osteoblastic activity due to absence of trophic stimuli such as mechanical stress and the sex hormones, or of reduced activity of the bone cells due to anti-anabolic substances which inhibit them, such as cortisone and its derivatives and the thyroid hormone in strong doses, or lastly of reduced availability of construction material due to its introduction in reduced quantities (starvation, dysfunction of the digestive system) or due to hindering of synthesis (deficiency of vitamin C, diabetes, cortisone and its derivatives) or due to an excessive degree of destruction (thyrotoxicosis). In the case of anti-anabolic hormones from the adrenal cortex, the mechanism may thus be twofold: inhibition of the osteoblasts and deprivation of the osteoblasts of glucoprotein material due to a general anomaly of metabolism. This may perhaps explain the most serious forms of bone atrophy which are usually observable in cases of hyperfunction of the adrenal cortex. Senile osteoporosis should, in my opinion, be included in the first of our groups because it cannot be said to be brought about by any of the causes usually cited for osteoporosis– such as deficiency of sex hormones, excess of hormones from the adrenal cortex, deficiency of calcium, etc.–and in all probability it will depend on a progressive involution of the osteoblasts brought about by old age. Senile involution is an expression of the descending phase of life's parabola and it involves all the organs and all the parenchymatous tissues in the human body, but it does not cause a parallel reduction of functions and activities on all of them equally. The skeletal system is one of the first to feel these reductions, because in old age life necessarily becomes less intense. Consequently in the economy of the ageing subject the generally reduced level of metabolism brings about a sort of selection in the nourishment of the different organs and systems, and sometimes almost a dismantling of some of these in an attempt to fall in with the new and reduced level of activities of some of the parenchymatous tissues, activities which may be incomplete or even transferred elsewhere. We believe that the moment which originally determines the beginning of senile osteoporosis coincides with the involutional process of cellular metabolism that strikes at all parenchymatous tissue during old age–striking, in the case of osteoporosis, hardest of all at the bony tissues. There is, indeed, no doubt that certain essential processes of cellular metabolism do alter with age, and that the reduction in the activity of the gonads does have considerable importance. In any case, just as adolescence and old age cannot be explained only in terms of gonadal activity, so the involution of the skeleton cannot be due merely to the involution of the gonads. How should one then interpret the well known benefit afforded by administration of sex hormones in cases of osteoporosis? Probably the action of oestrogens and androgens is, in this case, of a pharmacological nature, and comparable, for instance, to the action of digitalis on the cardiac muscle. It will be remembered how digitalis acts almost exclusively on myofibrils which have become inadequate, and has little or no effect on a normal myocardium. Similarly, the sex hormones would seem to exert a stimulating action on osteoblasts that are on the way to involution, while they exert little or no action on normal osteoblasts. In support of this we have the findings of Urist and other workers, who demonstrated that the administration of sex hormones produces calcium and nitrogen retention only in osteoporotics, while in non-osteoporotic subjects of the same age it produces no effect. On the other hand, the action of the sex hormones might act in cases of senile osteoporosis by returning the changed level of protein metabolism to normal. From the data in the literature and from the results of our own investigations, I conclude that osteoporosis in general, and senile osteoporosis in particular, are first and foremost the result of a disturbance in the metabolism of bone, and that the metabolic disturbance is closely and exclusively related to the degree of activity and the state of activity of the cells in the bone. Lastly, I believe that senile osteoporosis should not be considered an actual disease but rather as one limited aspect of the normal descending parabola which affects to a greater or less degree all the tissues of the body


The Journal of Bone & Joint Surgery British Volume
Vol. 58-B, Issue 2 | Pages 169 - 175
1 May 1976
Heatley F Greenwood R Boase D

Four cases of slipped upper femoral epiphyses in patients with intracranial tumours causing hypopituitarism and chiasmal compression are presented. Detailed endocrine studies in three cases showed severe deficiencies of growth hormone as well as of gonadotrophin and sex hormones. The literature is reviewed and the aetiology is discussed with special reference to Harris's hypothesis that an increase in growth hormone relative to oestrogen predisposes to slipping of the upper femoral epiphysis in humans, which these cases do not seem to support. In all cases the slip was bilateral, and it is emphasised that surgical treatment can provide only temporary fixation because fusion is dependent on correct hormonal therapy


Bone & Joint Research
Vol. 7, Issue 1 | Pages 58 - 68
1 Jan 2018
Portal-Núñez S Ardura JA Lozano D Martínez de Toda I De la Fuente M Herrero-Beaumont G Largo R Esbrit P

Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H. 2. O. 2. )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H. 2. O. 2. on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion. These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 4 | Pages 701 - 721
1 Nov 1958
Caughey JE

1. The clinical features of hyperostosis cranii are briefly reviewed. In large series of cases the syndrome has been found to occur almost entirely in females. 2. In recent studies of dystrophia myotonica, it is apparent that hyperostosis cranii is one of the variable features of the disorder. This disease occurs equally among males and females and the hyperostosis cranii also is distributed equally among males and females. 3. Hyperostosis cranii also occurs in patients with Morgagni's syndrome, with acromegaly, and as "senile hyperostosis.". 4. The etiology of hyperostosis is still a matter for speculation. More recent studies have focused attention on the endocrine system, and it seems probable, in view of the sex distribution in dystrophia myotonica, that the key to the problem may be found in this disorder. 5. In dystrophia myotonica the characteristic skull changes are hyperostosis cranii, a small pituitary fossa, excessive sinus formation and prognathism. These are acromegaloid changes. Gonadal atrophy is a common feature and endocrine study suggests that the endocrine defect is primarily a failure of the androgenic function of the adrenals and the testes. 6. In rodents and in humans ablation of the gonads leads to overactivity of gonadotrophic cells and, at times, of somatotrophic cells. Sometimes pituitary tumours develop. 7. Acromegaloid features may occur in eunuchs, and it is likely that the acromegaloid changes in dystrophia myotonica are of the same order from overactivity of growth hormone. 8. In animals excess of growth hormone produces thickening of the skull. 9. In dystrophia myotonica, acromegaly, and Morgagni's syndrome, it is suggested that hyperostosis cranii is an expression of unrestrained activity of growth hormone


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 365 - 371
1 Apr 2024
Ledford CK Shirley MB Spangehl MJ Berry DJ Abdel MP

Aims

Breast cancer survivors have known risk factors that might influence the results of total hip arthroplasty (THA) or total knee arthroplasty (TKA). This study evaluated clinical outcomes of patients with breast cancer history after primary THA and TKA.

Methods

Our total joint registry identified patients with breast cancer history undergoing primary THA (n = 423) and TKA (n = 540). Patients were matched 1:1 based upon age, sex, BMI, procedure (hip or knee), and surgical year to non-breast cancer controls. Mortality, implant survival, and complications were assessed via Kaplan-Meier methods. Clinical outcomes were evaluated via Harris Hip Scores (HHSs) or Knee Society Scores (KSSs). Mean follow-up was six years (2 to 15).


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims

Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice.

Methods

We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR).


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


Aims

This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night.

Methods

In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 729 - 734
1 Jul 2023
Borghi A Gronchi A

Desmoid tumours are a rare fibroblastic proliferation of monoclonal origin, arising in deep soft-tissues. Histologically, they are characterized by locally aggressive behaviour and an inability to metastasize, and clinically by a heterogeneous and unpredictable course. Desmoid tumours can occur in any anatomical site, but commonly arise in the limbs. Despite their benign nature, they can be extremely disabling and sometimes life-threatening, causing severe pain and functional limitations. Their surgical management is complex and challenging, due to uncertainties surrounding the biological and clinical behaviour, rarity, and limited available literature. Resection has been the first-line approach for patients with a desmoid tumour but, during the last few decades, a shift towards a more conservative approach has occurred, with an initial ‘wait and see’ policy. Many medical and regional forms of treatment are also available for the management of this condition, and others have recently emerged with promising results. However, many areas of controversy remain, and further studies and global collaboration are needed to obtain prospective and randomized data, in order to develop an appropriate shared stepwise approach.

Cite this article: Bone Joint J 2023;105-B(7):729–734.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 2 | Pages 268 - 283
1 May 1963
Wilkinson JA

1. Breech malposition and hormonal joint laxity produce atraumatic posterior dislocations in the hip joints of young rabbits. 2. Experimental studies were shown to cause the development of a limbus and other softtissue changes similar to those found in human congenital dislocations. 3. The development of femoral retroversion and anteversion in the presence of joint laxity is described. 4. The co-existence of breech malposition and hormonal joint laxity in utero, and their importance as prime factors in the etiology of congenital dislocation of the hip, are discussed


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.