Injury to the anterior cruciate ligament (ACL)
is one of the most devastating and frequent injuries of the knee. Surgical
reconstruction is the current standard of care for treatment of
ACL injuries in active patients. The widespread adoption of ACL
reconstruction over primary repair was based on early perception
of the limited healing capacity of the ACL. Although the majority
of ACL reconstruction surgeries successfully restore gross joint stability,
post-traumatic osteoarthritis is commonplace following these injuries,
even with ACL reconstruction. The development of new techniques
to limit the long-term clinical sequelae associated with ACL reconstruction
has been the main focus of research over the past decades. The improved
knowledge of healing, along with recent advances in tissue engineering
and regenerative medicine, has resulted in the discovery of novel
biologically augmented ACL-repair techniques that have satisfactory
outcomes in preclinical studies. This instructional review provides
a summary of the latest advances made in ACL repair. Cite this article:
The December 2012 Knee Roundup360 looks at: the demand for knee replacement; a Japanese knee outcome score; smoking and TKR; coronal alignment as a determinant of outcome in TKR; fixed flexion; MRI detected knee lesions; and lateral domed Oxford unicompartmental knee replacements.
The December 2014 Knee Roundup360 looks at: national guidance on arthroplasty thromboprophylaxis is effective; unicompartmental knee replacement has the edge in terms of short-term complications; stiff knees, timing and manipulation; neuropathic pain and total knee replacement; synovial fluid α-defensin and CRP: a new gold standard in joint infection diagnosis?; how to assess anterior knee pain?; where is the evidence? Five new implants under the spotlight; and a fresh look at ACL reconstruction
We used immediate post-operative The bending angles in the sagittal and axial planes were significantly
greater but the coronal-bending angle was significantly less in
the transtibial group than in the anteromedial portal and outside-in
groups (p <
0.001 each). The mean length of the femoral tunnel
in all three planes was significantly greater in the transtibial
group than the anteromedial portal and outside-in groups (p <
0.001 each), but all mean tunnel lengths in the three groups exceeded
30 mm. The only significant difference was the coronal graft- bending
angle in the anteromedial portal and outside-in groups (23.5° Compared with the transtibial technique, the anteromedial portal
and outside-in techniques may reduce the graft-bending stress at
the opening of the femoral tunnel. Despite the femoral tunnel length
being shorter in the anteromedial portal and outside-in techniques
than in the transtibial technique, a femoral tunnel length of more than
30 mm in the anteromedial portal and outside-in techniques may be
sufficient for the graft to heal. Cite this article:
We identified a series of 128 patients who had unilateral open reconstruction of the anterior cruciate ligament (ACL) by a single surgeon between 1993 and 2000. In all, 79 patients were reviewed clinically and radiologically eight to 15 years after surgery. Assessment included measurement of the Lysholm and Tegner scores, the ACL quality-of-life score and the Short Form-12 score, as well as the International Knee Documentation Committee clinical assessment, measurement of laxity by the KT-1000 arthrometer, a single-leg hop test and standardised radiography of both knees using the uninjured knee as a control. Of the injured knees, 46 (57%) had definite radiological evidence of osteoarthritis (Kellgren-Lawrence grade 2 or 3), with a mean difference between the injured and non-injured knees of 1.2 grades. The median ACL quality-of-life score was 80 (interquartile range (IQR) 60 to 90), the Lysholm score 84 (IQR 74 to 95), the Short Form-12 physical component score 54 (IQR 49 to 56) and the mean Hop Index 0.94 (0.52 to 1.52). In total 58 patients were graded as normal, 20 as nearly normal and one as abnormal on the KT-1000 assessment and pivot-shift testing. Taking the worst-case scenario of assuming all non-attenders (n = 48), two septic failures and one identified unstable knee found at review to be failures, the failure rate was 40%. Only two of the patients reviewed stated that they would not have similar surgery again. Open reconstruction of the ACL gives good, durable functional results, but with a high rate of radiologically evident osteoarthritis.
There is little evidence examining the relationship between anatomical landmarks, radiological placement of the tunnels and long-term clinical outcomes following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to investigate the reproducibility of intra-operative landmarks for placement of the tunnels in single-bundle reconstruction of the ACL using four-strand hamstring tendon autografts. Isolated reconstruction of the ACL was performed in 200 patients, who were followed prospectively for seven years with use of the International Knee Documentation Committee forms and radiographs. Taking 0% as the anterior and 100% as the posterior extent, the femoral tunnel was a mean of 86% ( The use of intra-operative landmarks resulted in reproducible placement of the tunnels and an excellent clinical outcome seven years after operation. Vertical inclination was associated with increased rotational instability and degenerative radiological changes, while rupture of the graft was associated with posterior placement of the tibial tunnel. If the osseous tunnels are correctly placed, single-bundle reconstruction of the ACL adequately controls both anteroposterior and rotational instability.
We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method. Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury.
Not all questions can be answered by prospective randomised controlled trials. Registries were introduced as a way of collecting information on joint replacements at a population level. They have helped to identify failing implants and the data have also been used to monitor the performance of individual surgeons. This review aims to look at some of the less well known registries that are currently being used worldwide, including those kept on knee ligaments, ankle arthroplasty, fractures and trauma.
The June 2012 Knee Roundup360 looks at: ACI and mosaicplasty; ACI after microfracture; exercise therapy and the degenerate medial meniscal tear; intra-articular bupivacaine or ropivacaine at knee arthroscopy; lateral trochlear inclination and patellofemoral osteoarthritis; bone loss and ACL reconstruction; assessing stability using the contralateral knee; tranexamic acid and a useful review of knee replacement.
The August 2012 Knee Roundup360 looks at: meniscal defects and a polyurethane scaffold; which is best between a single or double bundle; OA of the knee; how to resolve anterior knee pain; whether yoga can be bad for your menisci; metal ions in the serum; whether ACI is any good; the ACL; whether hyaluronic acid delays collagen degradation; and hyaluronan and patellar tendinopathy.
The clinical diagnosis of a partial tear of the
anterior cruciate ligament (ACL) is still subject to debate. Little
is known about the contribution of each ACL bundle during the Lachman
test. We investigated this using six fresh-frozen cadaveric lower
limbs. Screws were placed in the femora and tibiae as fixed landmarks
for digitisation of the bone positions. The femur was secured horizontally
in a clamp. A metal hook was screwed to the tibial tubercle and
used to apply a load of 150 N directed anteroposteriorly to the
tibia to simulate the Lachman test. The knees then received constant
axial compression and 3D knee kinematic data were collected by digitising
the screw head positions in 30° flexion under each test condition.
Measurements of tibial translation and rotation were made, first with
the ACL intact, then after sequential cutting of the ACL bundles,
and finally after complete division of the ACL. Two-way analysis
of variance analysis was performed. During the Lachman test, in all knees and in all test conditions,
lateral tibial translation exceeded that on the medial side. With
an intact ACL, both anterior and lateral tibial landmarks translated
significantly more than those on the medial side (p <
0.001).
With sequential division of the ACL bundles, selective cutting of
the posterolateral bundle (PLB) did not increase translation of
any landmark compared with when the ACL remained intact. Cutting the
anteromedial bundle (AMB) resulted in an increased anterior translation
of all landmarks. Compared to the intact ACL, when the ACL was fully
transected a significant increase in anterior translation of all
landmarks occurred (p <
0.001). However, anterior tibial translation
was almost identical after AMB or complete ACL division. We found that the AMB confers its most significant contribution
to tibial translation during the Lachman test, whereas the PLB has
a negligible effect on anterior translation. Section of the PLB
had a greater effect on increasing the internal rotation of the
tibia than the AMB. However, its contribution of a mean of 2.8°
amplitude remains low. The clinical relevance of our investigation
suggests that, based on anterior tibial translation only, one cannot distinguish
between a full ACL and an isolated AMB tear. Isolated PLB tears
cannot be detected solely by the Lachman test, as this bundle probably
contributes more resistance to the pivot shift.
This annotation considers the place of extra-articular
reconstruction in the treatment of anterior cruciate ligament (ACL)
deficiency. Extra-articular reconstruction has been employed over
the last century to address ACL deficiency. However, the technique
has not gained favour, primarily due to residual instability and
the subsequent development of degenerative changes in the lateral
compartment of the knee. Thus intra-articular reconstruction has
become the technique of choice. However, intra-articular reconstruction
does not restore normal knee kinematics. Some authors have recommended
extra-articular reconstruction in conjunction with an intra-articular
technique. The anatomy and biomechanics of the anterolateral structures
of the knee remain largely undetermined. Further studies to establish
the structure and function of the anterolateral structures may lead
to more anatomical extra-articular reconstruction techniques that
supplement intra-articular reconstruction. This might reduce residual
pivot shift after an intra-articular reconstruction and thus improve
the post-operative kinematics of the knee.
The purpose of this anatomical study was to explore the morphological variations of the semitendinosus and gracilis tendons in length and cross-section and the statistical relationship between length, cross-section, and body height. We studied the legs of 93 humans in 136 cadavers. In 43 specimens (46.2%) it was possible to harvest the tendons from both legs. We found considerable differences in the length and cross-section of the semitendinosus and the gracilis tendons with a significant correlation between the two. A correlation between the length of the femur, reflecting height, and the length of the tendons was only observed in specimens harvested from women. The reason for this gender difference was unclear. Additionally, there was a correlation between the cross-sectional area of the tendons and the length of the femur. Surgeons should be aware of the possibility of encountering insufficient length of tendon when undertaking reconstructive surgery as a result of anatomical variations between patients.
Animal studies have shown that implanted anterior cruciate ligament (ACL) grafts initially undergo a process of revascularisation prior to remodelling, ultimately increasing mechanical strength. We investigated whether minimal debridement of the intercondylar notch and the residual stump of the ruptured ACL leads to earlier revascularisation in ACL reconstruction in humans. We undertook a randomised controlled clinical trial in which 49 patients underwent ACL reconstruction using autologous four-strand hamstring tendon grafts. Randomised by the use of sealed envelopes, 25 patients had a conventional clearance of the intercondylar notch and 24 had a minimal debridement method. Three patients were excluded from the study. All patients underwent MR scanning postoperatively at 2, 6 and 12 months, together with clinical assessment using a KT-1000 arthrometer and International Knee Documentation Committee (IKDC) evaluation. All observations were made by investigators blinded to the surgical technique. Signal intensity was measured in 4 mm diameter regions of interest along the ACL graft and the mid-substance of the posterior cruciate ligament. Our results indicate that minimal debridement leads to earlier revascularisation within the mid-substance of the ACL graft at two months (paired