Advertisement for orthosearch.org.uk
Results 21 - 40 of 1189
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims

The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI.

Patients and Methods

Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion.


Bone & Joint 360
Vol. 5, Issue 2 | Pages 1 - 1
1 Apr 2016
Ollivere B


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1046 - 1050
1 Aug 2007
Christen B Heesterbeek PV Wymenga A Wehrli U

We have examined the relationship between the size of the flexion gap and the anterior translation of the tibia in flexion during implantation of a posterior cruciate ligament (PCL)-retaining BalanSys total knee replacement (TKR). In 91 knees, the flexion gap and anterior tibial translation were measured intra-operatively using a custom-made, flexible tensor-spacer device.

The results showed that for each increase of 1 mm in the flexion gap in the tensed knee a mean anterior tibial translation of 1.25 mm (SD 0.79, 95% confidence interval 1.13 to 1.37) was produced.

When implanting a PCL-retaining TKR the surgeon should be aware that the tibiofemoral contact point is related to the choice of thickness of the polyethylene insert. An additional thickness of polyethylene insert of 2 mm results in an approximate increase in tibial anterior translation of 2.5 mm while the flexed knee is distracted with a force of between 100 N and 200 N.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 4 | Pages 700 - 700
1 Jul 1997
Walsh HPJ


The Journal of Bone & Joint Surgery British Volume
Vol. 58-B, Issue 2 | Pages 217 - 219
1 May 1976
Williams P

A new technique of tibialis posterior transfer is described which has been used in a wide variety of conditions producing muscular imbalance in the foot. The results in eighty-five feet are reviewed in terms of range of motion, power and voluntary control of the transfer. The effect of the transfer on shoe wear, on the necessity for bracing and on the child's or his parents' assessment of the results are used to allocate an overall evaluation of the operation. Recommendations on the indications for the operation are given.


The Journal of Bone & Joint Surgery British Volume
Vol. 67-B, Issue 3 | Pages 432 - 437
1 May 1985
Silver R de la Garza J Rang M

The lower limbs of five cadavers were dissected and the lengths of the muscle fibres and the weights of all the muscles below the knee were measured. From this information the relative strength and excursion of each muscle was determined. We found that the plantarflexors of the ankle were six times as strong as the dorsiflexors. We have therefore discarded the concept of "muscle balance" in tendon transfer surgery and propose that task appropriateness should be the guide. The constant relationship between muscle fibre length and muscle excursion means that contractures are accompanied by decreased excursion. Tendon lengthening improves deformity but does not improve the decreased active range of movement.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal



The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article: Bone Joint J 2024;106-B(6):525–531



Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with hip arthroscopy and acetabular rim trimming or anteverting periacetabular osteotomy (PAO). Cite this article: Bone Jt Open 2021;2(10):813–824


Bone & Joint Open
Vol. 3, Issue 1 | Pages 85 - 92
27 Jan 2022
Loughenbury PR Tsirikos AI

The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article: Bone Joint J 2024;106-B(11):1206–1215


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article: Bone Joint Res 2023;12(9):536–545


Bone & Joint 360
Vol. 13, Issue 2 | Pages 23 - 26
1 Apr 2024

The April 2024 Foot & Ankle Roundup. 360. looks at: Safety of arthroscopy combined with radial extracorporeal shockwave therapy for osteochondritis of the talus; Bipolar allograft transplantation of the ankle; Identifying risk factors for osteonecrosis after talar fracture; Balancing act: immediate versus delayed weightbearing in ankle fracture recovery; Levelling the field: proximal supination osteotomy’s efficacy in severe and super-severe hallux valgus; Restoring balance: how adjusting the tibiotalar joint line influences movement after ankle surgery


Bone & Joint Open
Vol. 4, Issue 5 | Pages 370 - 377
19 May 2023
Comeau-Gauthier M Bzovsky S Axelrod D Poolman RW Frihagen F Bhandari M Schemitsch E Sprague S

Aims. Using data from the Hip Fracture Evaluation with Alternatives of Total Hip Arthroplasty versus Hemiarthroplasty (HEALTH) trial, we sought to determine if a difference in functional outcomes exists between monopolar and bipolar hemiarthroplasty (HA). Methods. This study is a secondary analysis of patients aged 50 years or older with a displaced femoral neck fracture who were enrolled in the HEALTH trial and underwent monopolar and bipolar HA. Scores from the Western Ontario and McMaster University Arthritis Index (WOMAC) and 12-Item Short Form Health Survey (SF-12) Physical Component Summary (PCS) and (MCS) were compared between the two HA groups using a propensity score-weighted analysis. Results. Of 746 HAs performed in the HEALTH trial, 404 were bipolar prostheses and 342 were unipolar. After propensity score weighting, adequate balance between the bipolar and unipolar groups was obtained as shown by standardized mean differences less than 0.1 for each covariable. A total of 24 months after HA, the total WOMAC score and its subcomponents showed no statistically significant difference between the unipolar and bipolar groups. Similarly, no statistically significant difference was found in the PCS and MCS scores of the SF-12 questionnaire. In participants aged 70 years and younger, no difference was found in any of the functional outcomes. Conclusion. From the results of this study, the use of bipolar HA over unipolar design does not provide superior functional outcomes at 24 months postoperatively. The theoretical advantage of reduced acetabular wear with bipolar designs does not appear to influence functional outcomes in the first two years postoperatively. Cite this article: Bone Jt Open 2023;4(5):370–377


Bone & Joint Research
Vol. 12, Issue 4 | Pages 231 - 244
1 Apr 2023
Lukas KJ Verhaegen JCF Livock H Kowalski E Phan P Grammatopoulos G

Aims. Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. Methods. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction. Results. When all ethnicities were combined the mean values for LL, SS, PT, and PI were: 47.4° (SD 11.0°), 35.8° (SD 7.8°), 14.0° (SD 7.2°), and 48.8° (SD 10°), respectively. LL, SS, and PT had statistically significant (p < 0.001) changes per decade at: −1.5° (SD 0.3°), −1.3° (SD 0.3°), and 1.4° (SD 0.1°). Asian populations had the largest age-dependent change in LL, SS, and PT compared to any other ethnicity per decade at: −1.3° (SD 0.3°) to −0.5° (SD 1.3°), –1.2° (SD 0.2°) to −0.3° (SD 0.3°), and 1.7° (SD 0.2°) versus 1.1° (SD 0.1°), respectively. Conclusion. Ageing alters the orientation between the spine and pelvis, causing LL, SS, and PT to modify their orientations in a compensatory mechanism to maintain sagittal alignment for balance when standing. Asian populations have the largest degree of age-dependent change to their spinopelvic parameters compared to any other ethnicity, likely due to their lower PI. Cite this article: Bone Joint Res 2023;12(4):231–244


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636