Advertisement for orthosearch.org.uk
Results 341 - 360 of 645
Results per page:
Bone & Joint Research
Vol. 9, Issue 7 | Pages 429 - 439
1 Jul 2020
Tahir M Chaudhry EA Zaffar Z Anwar K Mamoon MAH Ahmad M Jamali AR Mehboob G

Aims

We hypothesized that the wide-awake local anaesthesia with no tourniquet (WALANT) technique is cost-effective, easy to use, safe, and reproducible, with a low learning curve towards mastery, having a high patient satisfaction rate. Furthermore, WALANT would be a suitable alternative for the austere and developing nation environments where lack of funds and resources are a common issue.

Methods

This was a randomized control trial of 169 patients who required surgery for closed isolated distal radius fractures. The study was performed between March 2016 and April 2019 at a public sector level 1 trauma centre. General anaesthesia was used in 56 patients, Bier’s block in 58 patients, and WALANT in 55 patients. Data were collected on pre-, peri-, and postoperative parameters, clinical outcome, hospital costs, and patient satisfaction. One-way analysis of variance (ANOVA) was used with a p-value of 0.05 being significant.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 748 - 754
1 Jul 2000
Case CP Langkamer VG Lock RJ Perry MJ Palmer MR Kemp AJ

We compared the peripheral blood and periprosthetic tissues of 53 patients at revision arthroplasty with those of 30 patients at primary arthroplasty to determine whether there is a systemic difference in lymphocytes in patients with worn hip implants. The absolute number and relative proportion of lymphocytes bearing CD2, CD3, CD4, CD8, CD16, CD19, HLA-DR, kappa and lambda antigens were compared with the levels of IL-1β, IL-6 and PGE. 2. in the pseudosynovial membrane as well as with a semiquantitative estimate of metal and polyethylene particles, necrosis and chronic inflammation and the total concentration of metals within the periprosthetic tissues. There was a significant increase in the relative proportion of CD2-positive T-cells and CD16-positive natural killer cells in the peripheral blood at revision arthroplasty compared with primary arthroplasty and an increased proportion of CD8-positive T-cells and a decreased ratio of CD4 to CD8 (helper inducer/suppressor cytotoxic cells). Three control patients, who went on to have revision surgery, had values at primary arthroplasty which were similar to those of patients at the time of revision surgery. These differences did not correlate with the local concentration of metal, plastic or cement or inflammatory response or the type of prosthesis. An inverse correlation was noted between the necrosis in the periprosthetic tissue and both the local production of IL-6 and the absolute numbers of T-cells in peripheral blood. We conclude that there may be several cell-mediated systemic immune responses to aseptic loosening, at least one of which may be directly related to events in the periprosthetic tissues. We cannot exclude the possibility that the changes in the proportion of CD8-positive cells reflected a predisposition, rather than a reaction, to loosening of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 54-B, Issue 3 | Pages 535 - 546
1 Aug 1972
Jeffree GM

1. Histochemical staining and correlated biochemical estimations of five hydrolytic enzymes were done on eighteen benign and twenty malignant fibroblastic lesions of bone and soft tissue. 2. Alkaline phosphatase activity was moderate in a fibroma and very high in fibrous dysplasia. In a typical fibrosarcoma the fibroblasts showed no enzyme activity and estimations were low. Exceptions indicated an osteogenic potential in the tumour. 3. ß-glucuronidase, leucine aminopeptidase, and to a less extent non-specific esterase, were more active in malignant than in benign lesions, and the highest activities were found in sarcomata arising in Paget's disease of bone. 4. Acid phosphatase showed no correlation with malignancy and was generally unremarkable except for high activity in osteoclasts, but was raised in two sarcomata that occurred after irradiation of giant-cell tumours. 5. A non-osteogenic fibroma and a fibrous cortical defect, though poorly represented in this series, are not uncommon; they sometimes lead to pathological fracture, but sarcoma is very rare in such lesions. They tend to show more alkaline phosphatase than fibrosarcoma but not the very high activity of fibrous dysplasia, which is related to its osteogenic potential. 6. Fibrous dysplasia most often presents in the five to fifteen age group but seldom leads to malignancy, though this may occur, usually as osteosarcoma, which has a similar high content of alkaline phosphatase. Fibrosarcoma is typically negative or very weak in this enzyme: the exceptional cases with high activity were tumours which were in part osteosarcoma. Generally the demonstration of high alkaline phosphatase activity in a fibroblastic lesion of bone, in the absence of trauma or inflammation, suggests the diagnosis of fibrous dysplasia


The Journal of Bone & Joint Surgery British Volume
Vol. 35-B, Issue 4 | Pages 598 - 626
1 Nov 1953
Harrison MHM Schajowicz F Trueta J

Osteoarthritis, as seen in the hip, is a disease which eventually embraces all the tissues of the joint but begins as a reaction of the juxta-chondral blood vessels to a degeneration of the articular cartilage; this reaction results in a hyperaemia of the bone. To our surprise we found that daily use preserves rather than "wears out" articular cartilage; indeed inadequate use is the commonest cause of cartilage degeneration and ensuing vascular invasion. To this factor are added the effects of excessive pressure in the many patients who require surgical treatment for advanced osteoarthritis of a hip the seat of some anatomical incongruity. This etiology based on cartilage suffering does not exclude, but indeed explains, the osteoarthritis implanted on joints of a normal shape which have been previously affected by acute or chronic inflammation or by hormonal dysfunction, such as acromegalic osteoarthritis. The stimulus to vessel growth and invasion is the same in all these cases—namely cartilage damage. Once the vessels have entered the cartilage the bone and marrow of the osteophyte are inevitably laid down. What is so damaging in osteoarthritis seems to be not the degeneration of the cartilage but the vigorous and persistent attempt at repair, an attempt which aggravates the already disordered function of the joint not only by osteophyte formation but by the hypervascularity which weakens the structure of the bone beyond the point where it can carry its increased load. The collapse that follows provokes further reparative efforts with the same deplorable results. The osteoarthritic process thus appears to be an attempt to transform a decaying joint into a youthful one and for this, as in the miraculous rejuvenation depicted in Goethe's Faust, a high price must ultimately be paid


Bone & Joint Research
Vol. 9, Issue 5 | Pages 219 - 224
1 May 2020
Yang B Fang X Cai Y Yu Z Li W Zhang C Huang Z Zhang W

Aims

Preoperative diagnosis is important for revision surgery after prosthetic joint infection (PJI). The purpose of our study was to determine whether reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which is used to detect bacterial ribosomal RNA (rRNA) preoperatively, can reveal PJI in low volumes of aspirated fluid.

Methods

We acquired joint fluid samples (JFSs) by preoperative aspiration from patients who were suspected of having a PJI and failed arthroplasty; patients with preoperative JFS volumes less than 5 ml were enrolled. RNA-based polymerase chain reaction (PCR) and bacterial culture were performed, and diagnostic efficiency was compared between the two methods.According to established Musculoskeletal Infection Society (MSIS) criteria, 21 of the 33 included patients were diagnosed with PJI.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 586 - 592
1 May 2020
Wijn SRW Rovers MM van Tienen TG Hannink G

Aims

Recent studies have suggested that corticosteroid injections into the knee may harm the joint resulting in cartilage loss and possibly accelerating the progression of osteoarthritis (OA). The aim of this study was to assess whether patients with, or at risk of developing, symptomatic osteoarthritis of the knee who receive intra-articular corticosteroid injections have an increased risk of requiring arthroplasty.

Methods

We used data from the Osteoarthritis Initiative (OAI), a multicentre observational cohort study that followed 4,796 patients with, or at risk of developing, osteoarthritis of the knee on an annual basis with follow-up available up to nine years. Increased risk for symptomatic OA was defined as frequent knee symptoms (pain, aching, or stiffness) without radiological evidence of OA and two or more risk factors, while OA was defined by the presence of both femoral osteophytes and frequent symptoms in one or both knees. Missing data were imputed with multiple imputations using chained equations. Time-dependent propensity score matching was performed to match patients at the time of receving their first injection with controls. The effect of corticosteroid injections on the rate of subsequent (total and partial) knee arthroplasty was estimated using Cox proportional-hazards survival analyses.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1035 - 1041
1 Sep 2019
Markel DC Bou-Akl T Rossi MD Pizzimenti N Wu B Ren W

Aims

The aim of this study was to evaluate blood metal ion levels, leucocyte profiles, and serum cytokines in patients with a total hip arthroplasty (THA) involving modular dual-mobility components.

Patients and Methods

A total of 39 patients were recruited, with clinical follow-up of up to two years. Outcome was assessed using the Harris Hip Score (HHS, the 12-Item Short-Form Health Survey (SF-12), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and a visual analogue scale (VAS) for pain. Blood concentrations of cobalt (Co), chromium (Cr), and serum cytokines were measured. Subpopulations of leucocytes were analyzed by flow cytometry.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 556 - 567
1 May 2020
Park JW Lee Y Lee YJ Shin S Kang Y Koo K

Deep gluteal syndrome is an increasingly recognized disease entity, caused by compression of the sciatic or pudendal nerve due to non-discogenic pelvic lesions. It includes the piriformis syndrome, the gemelli-obturator internus syndrome, the ischiofemoral impingement syndrome, and the proximal hamstring syndrome. The concept of the deep gluteal syndrome extends our understanding of posterior hip pain due to nerve entrapment beyond the traditional model of the piriformis syndrome. Nevertheless, there has been terminological confusion and the deep gluteal syndrome has often been undiagnosed or mistaken for other conditions. Careful history-taking, a physical examination including provocation tests, an electrodiagnostic study, and imaging are necessary for an accurate diagnosis.

After excluding spinal lesions, MRI scans of the pelvis are helpful in diagnosing deep gluteal syndrome and identifying pathological conditions entrapping the nerves. It can be conservatively treated with multidisciplinary treatment including rest, the avoidance of provoking activities, medication, injections, and physiotherapy.

Endoscopic or open surgical decompression is recommended in patients with persistent or recurrent symptoms after conservative treatment or in those who may have masses compressing the sciatic nerve.

Many physicians remain unfamiliar with this syndrome and there is a lack of relevant literature. This comprehensive review aims to provide the latest information about the epidemiology, aetiology, pathology, clinical features, diagnosis, and treatment.

Cite this article: Bone Joint J 2020;102-B(5):556–567.


Bone & Joint 360
Vol. 8, Issue 5 | Pages 35 - 37
1 Oct 2019


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 467 - 474
1 May 1997
Hukkanen M Corbett SA Batten J Konttinen YT McCarthy ID Maclouf J Santavirta S Hughes SPF Polak JM

Aseptic loosening is a major cause of failure of total hip arthroplasty. The adverse tissue response to prosthetic wear particles, with activation of cytokine and prostanoid production, contributes to bone loss around the implants. We have investigated the possibility that inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) are expressed in macrophages in the pseudomembrane at the bone-implant interface, thereby contributing to the periprosthetic bone resorption. We also assessed whether peroxynitrite, a nitric oxide (NO)-derived oxidant associated with cellular injury, is generated in the membrane. Enzymatic activity of iNOS was measured using the arginine-citrulline assay technique and prostaglandin E. 2. (PGE. 2. ), as an indicator of COX-2 activity, was measured using an enzyme immunoassay. Cellular immunoreactivity for iNOS, nitrotyrosine (a marker of peroxynitrite-induced cellular injury) and COX-2 was assessed by quantitative peroxidase immunocytochemistry while immunofluorescence methods were used for subsequent co-localisation studies with CD68. +. macrophages. The presence of calcium-independent iNOS activity and PGE. 2. production was confirmed in the homogenized interface membrane. Immunocytochemistry showed that periprosthetic CD68. +. wear-debris-laden macrophages were the most prominent cell type immunoreactive for iNOS, nitrotyrosine and COX-2. Other periprosthetic inflammatory and resident cell types were also found to immunolocalise nitrotyrosine thereby suggesting peroxynitrite-induced protein nitrosylation and cellular damage not only in NO-producing CD68. +. macrophages, but also in their neighbouring cells. These data indicate that both iNOS and COX-2 are expressed by CD68. +. macrophages in the interface membrane and peroxynitrite-induced cellular damage is evident in such tissue. If high-output NO and peroxynitrite generation were to cause macrophage cell death, this would result in the release of phagocytosed wear debris into the extracellular matrix. A detrimental cycle of events would then be established with further phagocytosis by newly-recruited inflammatory cells and subsequent NO, peroxynitrite and prostanoid synthesis. Since both NO and have been implicated in the induction and PGE. 2. maintenance of chronic inflammation with resulting loss of bone, and peroxynitrite in the pathogenesis of disease states, they may be central to the pathogenesis of aseptic loosening


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 361 - 364
1 Apr 2019
Rodeo SA

Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research.

Cite this article: Bone Joint J 2019;101-B:361–364.


Bone & Joint 360
Vol. 9, Issue 1 | Pages 10 - 14
1 Feb 2020
Ibrahim M Reito A Pidgaiska O


Bone & Joint Research
Vol. 8, Issue 10 | Pages 481 - 488
1 Oct 2019
Nathan K Lu LY Lin T Pajarinen J Jämsen E Huang J Romero-Lopez M Maruyama M Kohno Y Yao Z Goodman SB

Objectives

Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures.

Methods

A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion.


Bone & Joint 360
Vol. 8, Issue 4 | Pages 5 - 13
1 Aug 2019
Middleton R Khan T Alvand A


Bone & Joint 360
Vol. 9, Issue 1 | Pages 25 - 28
1 Feb 2020


Bone & Joint Research
Vol. 9, Issue 2 | Pages 82 - 89
1 Feb 2020
Chen Z Zhang Z Guo L Wei X Zhang Y Wang X Wei L

Chondrocyte hypertrophy represents a crucial turning point during endochondral bone development. This process is tightly regulated by various factors, constituting a regulatory network that maintains normal bone development. Histone deacetylase 4 (HDAC4) is the most well-characterized member of the HDAC class IIa family and participates in different signalling networks during development in various tissues by promoting chromatin condensation and transcriptional repression. Studies have reported that HDAC4-null mice display premature ossification of developing bones due to ectopic and early-onset chondrocyte hypertrophy. Overexpression of HDAC4 in proliferating chondrocytes inhibits hypertrophy and ossification of developing bones, which suggests that HDAC4, as a negative regulator, is involved in the network regulating chondrocyte hypertrophy. Overall, HDAC4 plays a key role during bone development and disease. Thus, understanding the role of HDAC4 during chondrocyte hypertrophy and endochondral bone formation and its features regarding the structure, function, and regulation of this process will not only provide new insight into the mechanisms by which HDAC4 is involved in chondrocyte hypertrophy and endochondral bone development, but will also create a platform for developing a therapeutic strategy for related diseases.

Cite this article: Bone Joint Res. 2020;9(2):82–89.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 352 - 359
1 Mar 2020
Yanik EL Colditz GA Wright RW Saccone NL Evanoff BA Jain NB Dale AM Keener JD

Aims

Few risk factors for rotator cuff disease (RCD) and corresponding treatment have been firmly established. The aim of this study was to evaluate the relationship between numerous risk factors and the incidence of surgery for RCD in a large cohort.

Methods

A population-based cohort of people aged between 40 and 69 years in the UK (the UK Biobank) was studied. People who underwent surgery for RCD were identified through a link with NHS inpatient records covering a mean of eight years after enrolment. Multivariate Cox proportional hazards regression was used to calculate hazard ratios (HRs) as estimates of associations with surgery for RCD accounting for confounders. The risk factors which were considered included age, sex, race, education, Townsend deprivation index, body mass index (BMI), occupational demands, and exposure to smoking.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 891 - 896
1 Aug 2019
Rossi LA Murray IR Chu CR Muschler GF Rodeo SA Piuzzi NS

There is good scientific rationale to support the use of growth factors to promote musculoskeletal tissue regeneration. However, the clinical effectiveness of platelet-rich plasma (PRP) and other blood-derived products has yet to be proven. Characterization and reporting of PRP preparation protocols utilized in clinical trials for the treatment of musculoskeletal disease is highly inconsistent, and the majority of studies do not provide sufficient information to allow the protocols to be reproduced. Furthermore, the reporting of blood-derived products in orthopaedics is limited by the multiple PRP classification systems available, which makes comparison of results between studies challenging. Several attempts have been made to characterize and classify PRP; however, no consensus has been reached, and there is lack of a comprehensive and validated classification. In this annotation, we outline existing systems used to classify preparations of PRP, highlighting their advantages and limitations. There remains a need for standardized universal nomenclature to describe biological therapies, as well as a comprehensive and reproducible classification system for autologous blood-derived products.

Cite this article: Bone Joint J 2019;101-B:891–896.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 60 - 70
1 Feb 2020
Li Z Arioka M Liu Y Aghvami M Tulu S Brunski JB Helms JA

Aims

Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma.

Methods

Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation.


Bone & Joint 360
Vol. 7, Issue 5 | Pages 18 - 21
1 Oct 2018