Advertisement for orthosearch.org.uk
Results 321 - 340 of 3324
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 398 - 404
1 Feb 2021
Christ AB Fujiwara T Yakoub MA Healey JH

Aims. We have evaluated the survivorship, outcomes, and failures of an interlocking, reconstruction-mode stem-sideplate implant used to preserve the native hip joint and achieve proximal fixation when there is little residual femur during large endoprosthetic reconstruction of the distal femur. Methods. A total of 14 patients underwent primary or revision reconstruction of a large femoral defect with a short remaining proximal femur using an interlocking, reconstruction-mode stem-sideplate for fixation after oncological distal femoral and diaphyseal resections. The implant was attached to a standard endoprosthetic reconstruction system. The implant was attached to a standard endoprosthetic reconstruction system. None of the femoral revisions were amenable to standard cemented or uncemented stem fixation. Patient and disease characteristics, surgical history, final ambulatory status. ,. and Musculoskeletal Tumor Society (MSTS) score were recorded. The percentage of proximal femur remaining was calculated from follow-up radiographs. Results. All 14 at-risk native hip joints were preserved at a mean final follow-up of 6.0 years (SD 3.7), despite a short residual femur, often after proximal osteotomies through the lesser trochanter. Overall, 13 of 14 stems had long-term successful fixation. Eight patients required no reoperation. Three patients required reoperation due to implant-related issues, and three patients required reoperation for wound healing problems or infection. There were no dislocations or fractures. At final follow-up the mean MSTS score was 24.9 (SD 4.1). Nine patients required no ambulation aids, and only one had a Trendelenburg gait. Conclusion. This interlocking, reconstruction-mode stem-sideplate reliably preserves native hip joint anatomy and function after large femoral resection with a short remaining proximal femur, both in the primary and revision setting. This is particularly important for preventing or delaying total femoral arthroplasty in young patients after oncological reconstruction. Hip abductor strength and function could be maintained by this method, and the risk of dislocation eliminated. The success of this technique in this modest series should be verified in a larger collaborative study and will be of interest to revision surgeons and oncologists. Cite this article: Bone Joint J 2021;103-B(2):398–404


Bone & Joint Research
Vol. 10, Issue 9 | Pages 611 - 618
27 Sep 2021
Ali E Birch M Hopper N Rushton N McCaskie AW Brooks RA

Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. Results. Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. Conclusion. We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611–618


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims. A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation. Methods. This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded. Results. There were 194 patients in the control group, 103 in group 1, and 74 in group 2. There were no significant differences in baseline demographics between the groups. Patients in group 2 had significantly higher baseline mental health subscores than control and group 1 patients (53.2 vs 50.2 vs 50.2, p = 0.041). There were no significant differences in any PROMs at six weeks or 12 months postoperatively (p > 0.05). There was no difference in the rate of manipulation under anaesthesia (MUA), complication rates, postoperative ROM, or blood loss. There were fewer mechanical axis outliers in groups 1 and 2 (25.2%, 14.9% respectively) versus control (28.4%), but this was not statistically significant (p = 0.10). Conclusion. The sequential addition of navigation of the distal femoral cut and sensor-guided ligament balancing did not improve short-term PROMs, radiological outcomes, or complication rates compared with conventional techniques. The costs of these added technologies may not be justified. Cite this article: Bone Joint J 2020;102-B(6 Supple A):24–30


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1586 - 1594
1 Oct 2021
Sharma N Rehmatullah N Kuiper JH Gallacher P Barnett AJ

Aims. The Oswestry-Bristol Classification (OBC) is an MRI-specific assessment tool to grade trochlear dysplasia. The aim of this study is to validate clinically the OBC by demonstrating its use in selecting treatments that are safe and effective. Methods. The OBC and the patellotrochlear index were used as part of the Oswestry Patellotrochlear Algorithm (OPTA) to guide the surgical treatment of patients with patellar instability. Patients were assigned to one of four treatment groups: medial patellofemoral ligament reconstruction (MPFLr); MPFLr + tibial tubercle distalization (TTD); trochleoplasty; or trochleoplasty + TTD. A prospective analysis of a longitudinal patellofemoral database was performed. Between 2012 and 2018, 202 patients (233 knees) with a mean age of 24.2 years (SD 8.1), with recurrent patellar instability were treated by two fellowship-trained consultant sports/knee surgeons at The Robert Jones and Agnes Hunt Orthopaedic Hospital. Clinical efficacy of each treatment group was assessed by Kujala, International Knee Documentation Committee (IKDC), and EuroQol five-dimension questionnaire (EQ-5D) scores at baseline, and up to 60 months postoperatively. Their safety was assessed by complication rate and requirement for further surgery. The pattern of clinical outcome over time was analyzed using mixed regression modelling. Results. In all, 135 knees (mean age 24.9 years (SD 9.4)) were treated using a MPFLr. Ten knees (7.4%) required additional surgery. A total of 50 knees (mean age 24.4 years (SD 6.3)) were treated using MPFLr + TTD. Ten (20%) required additional surgery. A total of 20 knees (mean age 19.5 years (SD 3.0)) were treated using trochleoplasty + TTD. Three patients (15%) required additional surgery. In each treatment group, there was a significant improvement in Kujala, IKDC, and EQ-5D at one year postoperatively (p < 0.001) with a recognized level of overall complication rate. Conclusion. The OBC is a valid assessment tool to grade patients with trochlear dysplasia and, when used as part of the OPTA, helps to determine treatments that are safe and effective. This fulfils the requirements for its application in mainstream clinical practice. Cite this article: Bone Joint J 2021;103-B(10):1586–1594


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1386 - 1391
2 Aug 2021
Xiao J Liu B Li L Shi H Wu F

Aims. The primary aim of this study was to assess if traumatic triangular fibrocartilage complex (TFCC) tears can be treated successfully with immobilization alone. Our secondary aims were to identify clinical factors that may predict a poor prognosis. Methods. This was a retrospective analysis of 89 wrists in 88 patients between January 2015 and January 2019. All patients were managed conservatively initially with either a short-arm or above-elbow custom-moulded thermoplastic splint for six weeks. Outcome measures recorded included a visual analogue scale for pain, Patient-Rated Wrist Evaluation, Disabilities of the Arm, Shoulder and Hand score, and the modified Mayo Wrist Score (MMWS). Patients were considered to have had a poor outcome if their final MMWS was less than 80 points, or if they required eventual surgical intervention. Univariate and logistic regression analyses were used to identify independent predictors for a poor outcome. Results. In total, 76% of wrists (42/55) treated with an above-elbow splint had a good outcome, compared to only 29% (10/34) with a short-arm splint (p < 0.001). The presence of a complete foveal TFCC tear (p = 0.009) and a dorsally subluxated distal radioulnar joint (DRUJ) (p = 0.032) were significantly associated with a poor outcome on univariate analysis. Sex, age, energy of injury, hand dominance, manual occupation, ulnar variance, and a delay in initial treatment demonstrated no significant association. Multiple logistic regression revealed that short-arm immobilization (p < 0.001) and DRUJ subluxation (p = 0.020) were significant independent predictive factors of an eventual poor outcome. Conclusion. Nonoperative management of traumatic TFCC injuries with above-elbow immobilization is a viable treatment method, particularly in patients without DRUJ subluxation. Early surgery should be considered for patients with dorsal ulnar subluxation treated with short-arm splints to prevent prolonged morbidity. Cite this article: Bone Joint J 2021;103-B(8):1386–1391


Aims. Describe a statistical and economic analysis plan for the Distal Radius Acute Fracture Fixation Trial 2 (DRAFFT2) randomized controlled trial. Methods. DRAFFT2 is a multicentre, parallel, two-arm randomized controlled trial. It compares surgical fixation with K-wires versus plaster cast in adult patients who have sustained a dorsally displaced fracture of the distal radius. The primary outcome measure is the Patient-Rated Wrist Evaluation (PRWE, a validated assessment of wrist function and pain) at 12 months post-randomization. Secondary outcomes are measured at three, six, and 12 months after randomization and include the PWRE, EuroQoL EQ-5D-5L index and EQ-VAS (visual analogue scale), complication rate, and cost-effectiveness of the treatment. Results. This paper describes the full details of the planned methods of analysis and descriptive statistics. The DRAFFT2 study protocol has been published previously. Conclusion. The planned analysis strategy described records our intent to conduct statistical and within-trial cost-utility analyses. Cite this article: Bone Joint Open 2020;1-6:245–252


Bone & Joint Research
Vol. 9, Issue 7 | Pages 333 - 340
1 Jul 2020
Mumith A Coathup M Edwards TC Gikas P Aston W Blunn G

Aims. Limb salvage in bone tumour patients replaces the bone with massive segmental prostheses where achieving bone integration at the shoulder of the implant through extracortical bone growth has been shown to prevent loosening. This study investigates the effect of multidrug chemotherapy on extracortical bone growth and early radiological signs of aseptic loosening in patients with massive distal femoral prostheses. Methods. A retrospective radiological analysis was performed on adult patients with distal femoral arthroplasties. In all, 16 patients were included in the chemotherapy group with 18 patients in the non-chemotherapy control group. Annual radiographs were analyzed for three years postoperatively. Dimensions of the bony pedicle, osseointegration of the hydroxyapatite (HA) collar surface, bone resorption at the implant shoulder, and radiolucent line (RLL) formation around the cemented component were analyzed. Results. A greater RLL score (p = 0.041) was observed at three years postoperatively, with those receiving chemotherapy showing greater radiological loosening compared with those not receiving chemotherapy. Chemotherapy patients experience osteolysis at the shoulder of the ingrowth collar over time (p < 0.001) compared with non-chemotherapy patients where osteolysis was not observed. A greater median percentage integration of the collar surface was observed in the non-chemotherapy group (8.6%, interquartile range (IQR) 0.0% to 37.9%; p = 0.021) at three years. Bone growth around the collar was observed in both groups, and no statistical difference in amount of extracortical bony bridging was seen. Conclusion. Multidrug chemotherapy affects the osseointegration of ingrowth collars and accelerates signs of radiological loosening. This may increase the risk of aseptic loosening in patients with massive segmental implants used to treat bone cancer. Cite this article: Bone Joint Res 2020;9(7):333–340


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims. Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA). Methods. A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population. Results. There was a significant difference in means and distributions of the mHKA of the normal group compared to the arthritic group (mean -1.33° (SD 2.34°) vs mean -2.88° (SD 7.39°) respectively; p < 0.001). However, there was no significant difference between normal and arthritic groups using the aHKA (mean -0.87° (SD 2.54°) vs mean -0.77° (SD 2.84°) respectively; p = 0.550). There was no significant difference in the MPTA and LDFA between the normal and arthritic groups. Conclusion. The arithmetic HKA effectively estimated the constitutional alignment of the lower limb after the onset of arthritis in this cross-sectional population-based analysis. This finding is of significant importance to surgeons aiming to restore the constitutional alignment of the lower limb during TKA. Cite this article: Bone Jt Open 2021;2(5):351–358


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 36 - 42
1 Jun 2020
Nishitani K Kuriyama S Nakamura S Umatani N Ito H Matsuda S

Aims. This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes. Methods. A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle. Results. According to the mean and SD of γ angle (γ, 4.0 SD 3.0°), four groups (Extended or minor flexed group, −0.5° ≤ γ < 2.5° (n = 54)), Mild flexed group (2.5° ≤ γ < 5.5° (n = 63)), Moderate flexed group (5.5° ≤ γ < 8.5° (n = 26)), and Excessive flexed group (8.5° ≤ γ (n = 13)) were defined. The Excessive flexed group showed worse 2011KSSs in all subdomains (Symptoms, Satisfaction, Expectations, and Functional activities) than the Mild flexed group. Secondary regression showed a convex upward function, and the scores were highest at γ = 3.0°, 4.0°, and 3.0° in Satisfaction, Expectations, and Functional activities, respectively. Conclusion. The groups with a sagittal alignment of the femoral component > 8.5° showed inferior clinical outcomes in 2011KSSs. Secondary regression analyses showed that mild flexion of the femoral component was associated with the highest score. When implanting the Bi-Surface Knee prosthesis surgeons should pay careful attention to avoiding flexing the femoral component extensively during TKA. Our findings may be applicable to other implant designs. Cite this article: Bone Joint J 2020;102-B(6 Supple A):36–42


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 122 - 128
1 Jul 2021
Tibbo ME Limberg AK Gausden EB Huang P Perry KI Yuan BJ Berry DJ Abdel MP

Aims. The prevalence of ipsilateral total hip arthroplasty (THA) and total knee arthroplasty (TKA) is rising in concert with life expectancy, putting more patients at risk for interprosthetic femur fractures (IPFFs). Our study aimed to assess treatment methodologies, implant survivorship, and IPFF clinical outcomes. Methods. A total of 76 patients treated for an IPFF from February 1985 to April 2018 were reviewed. Prior to fracture, at the hip/knee sites respectively, 46 femora had primary/primary, 21 had revision/primary, three had primary/revision, and six had revision/revision components. Mean age and BMI were 74 years (33 to 99) and 30 kg/m. 2. (21 to 46), respectively. Mean follow-up after fracture treatment was seven years (2 to 24). Results. Overall, 59 fractures were classified as Vancouver C (Unified Classification System (UCS) D), 17 were Vancouver B (UCS B). In total, 57 patients (75%) were treated with open reduction and internal fixation (ORIF); three developed nonunion, three developed periprosthetic joint infection, and two developed aseptic loosening. In all, 18 patients (24%) underwent revision arthroplasty including 13 revision THAs, four distal femoral arthroplasties (DFAs), and one revision TKA: of these, one patient developed aseptic loosening and two developed nonunion. Survivorship free from any reoperation was 82% (95% confidence interval (CI) 66.9% to 90.6%) and 77% (95% CI 49.4% to 90.7%) in the ORIF and revision groups at two years, respectively. ORIF patients who went on to union tended to have stemmed knee components and greater mean interprosthetic distance (IPD = 189 mm (SD 73.6) vs 163 mm (SD 36.7); p = 0.546) than nonunited fractures. Patients who went on to nonunion in the revision arthroplasty group had higher medullary diameter: cortical width ratio (2.5 (SD 1.7) vs 1.3 (SD 0.3); p = 0.008) and lower IPD (36 mm (SD 30.6) vs 214 mm (SD 32.1); p < 0.001). At latest follow-up, 95% of patients (n = 72) were ambulatory. Conclusion. Interprosthetic femur fractures are technically and biologically challenging cases. Individualized approaches to internal fixation versus revision arthroplasty led to an 81% (95% CI 68.3% to 88.6%) survivorship free from reoperation at two years with 95% of patients ambulatory. Continued improvements in management are warranted. Cite this article: Bone Joint J 2021;103-B(7 Supple B):122–128


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 530 - 535
1 Mar 2021
Giannicola G Castagna V Villani C Gumina S Scacchi M

Aims. It has been hypothesized that proximal radial neck resorption (PRNR) following press-fit radial head arthroplasty (RHA) is due to stress-shielding. We compared two different press-fit stems by means of radiographs to investigate whether the shape and size of the stems are correlated with the degree of PRNR. Methods. The radiographs of 52 RHAs were analyzed both at 14 days postoperatively and after two years. A cylindrical stem and a conical stem were implanted in 22 patients (group 1) and 30 patients (group 2), respectively. The PRNR was measured in the four quadrants of the radial neck and the degree of stem filling was calculated by analyzing the ratio between the prosthetic stem diameter (PSD) and the medullary canal diameter (MCD) at the proximal portion of the stem (level A), halfway along the stem length (level B), and distally at the stem tip (level C). Results. Overall, 50 of the 52 patients displayed PRNR. The mean PRNR observed was 3.9 mm (0 to 7.4). The degree of endomedullary stem filling at levels A, B, and C was 96%, 90%, and 68% in group 1, and 96%, 72%, and 57%, in group 2, with differences being significant at levels B (p < 0.001) and C (p < 0.001). No significant correlations emerged between the severity of PRNR and the three stem/canal ratios either within each group or between the groups. Conclusion. PRNR in press-fit RHA appears to be independent of the shape and size of the stems. Other causes besides stem design should be investigated to explain completely this phenomenon. Cite this article: Bone Joint J 2021;103-B(3):530–535


The Bone & Joint Journal
Vol. 101-B, Issue 6 | Pages 724 - 731
1 Jun 2019
Bernthal NM Upfill-Brown A Burke ZDC Ishmael CR Hsiue P Hori K Hornicek F Eckardt JJ

Aims. Aseptic loosening is a major cause of failure in cemented endoprosthetic reconstructions. This paper presents the long-term outcomes of a custom-designed cross-pin fixation construct designed to minimize rotational stress and subsequent aseptic loosening in selected patients. The paper will also examine the long-term survivorship and modes of failure when using this technique. Patients and Methods. A review of 658 consecutive, prospectively collected cemented endoprosthetic reconstructions for oncological diagnoses at a single centre between 1980 and 2017 was performed. A total of 51 patients were identified with 56 endoprosthetic implants with cross-pin fixation, 21 of which were implanted following primary resection of tumour. Locations included distal femoral (n = 36), proximal femoral (n = 7), intercalary (n = 6), proximal humeral (n = 3), proximal tibial (n = 3), and distal humeral (n = 1). Results. The median follow-up was 132 months (interquartile range (IQR) 44 to 189). In all, 20 stems required revision: eight for infection, five for structural failure, five for aseptic loosening, and two for tumour progression. Mechanical survivorship at five, ten, and 15 years was 84%, 78%, and 78%, respectively. Mechanical failure rate varied by location, with no mechanical failures of proximal femoral constructs and distal femoral survivorship of 82%, 77%, and 77% at five, ten, and 15 years. The survivorship of primary constructs at five years was 74%, with no failure after 40 months, while the survivorship for revision constructs was 89%, 80%, and 80% at five, ten, and 15 years. . Conclusion. The rate of mechanical survivorship in our series is similar to those reported for other methods of reconstruction for short diaphyseal segments, such as compressive osseointegration. The mechanical failure rate differed by location, while there was no substantial difference in long-term survival between primary and revision reconstructions. Overall, custom cross-pin fixation is a viable option for endoprosthetic reconstruction of short metaphyseal segments with an acceptable rate of mechanical failure. Cite this article: Bone Joint J 2019;101-B:724–731


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 635 - 643
1 Apr 2021
Ross LA Keenan OJF Magill M Brennan CM Clement ND Moran M Patton JT Scott CEH

Aims. Debate continues regarding the optimum management of periprosthetic distal femoral fractures (PDFFs). This study aims to determine which operative treatment is associated with the lowest perioperative morbidity and mortality when treating low (Su type II and III) PDFFs comparing lateral locking plate fixation (LLP-ORIF) or distal femoral arthroplasty (DFA). Methods. This was a retrospective cohort study of 60 consecutive unilateral (PDFFs) of Su types II (40/60) and III (20/60) in patients aged ≥ 60 years: 33 underwent LLP-ORIF (mean age 81.3 years (SD 10.5), BMI 26.7 (SD 5.5); 29/33 female); and 27 underwent DFA (mean age 78.8 years (SD 8.3); BMI 26.7 (SD 6.6); 19/27 female). The primary outcome measure was reoperation. Secondary outcomes included perioperative complications, calculated blood loss, transfusion requirements, functional mobility status, length of acute hospital stay, discharge destination and mortality. Kaplan-Meier survival analysis was performed. Cox multivariate regression analysis was performed to identify risk factors for reoperation after LLP-ORIF. Results. Follow-up was at mean 3.8 years (1.0 to 10.4). One-year mortality was 13% (8/60). Reoperation was more common following LLP-ORIF: 7/33 versus 0/27 (p = 0.008). Five-year survival for reoperation was significantly better following DFA; 100% compared to 70.8% (95% confidence interval (CI) 51.8% to 89.8%, p = 0.006). There was no difference for the endpoint mechanical failure (including radiological loosening); ORIF 74.5% (56.3 to 92.7), and DFA 78.2% (52.3 to 100, p = 0.182). Reoperation following LLP-ORIF was independently associated with medial comminution; hazard ratio (HR) 10.7 (1.45 to 79.5, p = 0.020). Anatomical reduction was protective against reoperation; HR 0.11 (0.013 to 0.96, p = 0.046). When inadequately fixed fractures were excluded, there was no difference in five-year survival for either reoperation (p = 0.156) or mechanical failure (p = 0.453). Conclusion. Absolute reoperation rates are higher following LLP fixation of low PDFFs compared to DFA. Where LLP-ORIF was well performed with augmentation of medial comminution, there was no difference in survival compared to DFA. Though necessary in very low fractures, DFA should be used with caution in patients with greater life expectancies due to the risk of longer term aseptic loosening. Cite this article: Bone Joint J 2021;103-B(4):635–643


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 491 - 496
1 Apr 2019
Li NY Kalagara S Hersey A Eltorai AEM Daniels AH Cruz Jr AI

Aims. The aim of this study was to utilize a national paediatric inpatient database to determine whether obesity influences the operative management and inpatient outcomes of paediatric limb fractures. Patients and Methods. The Kids’ Inpatient Database (KID) was used to evaluate children between birth and 17 years of age, from 1997 and 2012, who had undergone open and closed treatment of humeral, radial and ulna, femoral, tibial, and ankle fractures. Demographics, hospital charges, lengths of stay (LOS), and complications were analyzed. Results. Obesity was significantly associated with increased rates of open reduction and internal fixation (ORIF) for: distal humeral (odds ratio (OR) = 2.139, 95% confidence interval (CI) 1.92 to 3.44; p < 0.001); distal radius and ulna fractures (OR = 1.436, 95% CI 1.14 to 2.16; p < 0.05); distal femoral (OR = 2.051, 95% CI 1.69 to 3.60; p < 0.05); tibial and fibula shaft (OR = 2.101, 95% CI 2.10 to 3.50; p < 0.001); and ankle (OR = 1.733, 95% CI 1.70 to 2.39; p < 0.001). Older age was significantly associated with ORIF for all fractures (p < 0.05). LOS, hospital charges, and complications were significantly increased in obese patients following ORIF for upper and lower limb fractures (p < 0.05). Conclusion. Obese paediatric patients are more likely to undergo ORIF in both upper and lower limb fractures and have more inpatient complications. These findings may assist in informing obese paediatric fracture patients and their families regarding the increased risk for open operative fixation and associated outcomes. Cite this article: Bone Joint J 2019;101-B:491–496


Bone & Joint Open
Vol. 2, Issue 1 | Pages 33 - 39
14 Jan 2021
McLaughlin JR Lee KR Johnson MA

Aims. We present the clinical and radiological results at a minimum follow-up of 20 years using a second-generation uncemented total hip arthroplasty (THA). These results are compared to our previously published results using a first-generation hip arthroplasty followed for 20 years. Methods. A total of 62 uncemented THAs in 60 patients were performed between 1993 and 1994. The titanium femoral component used in all cases was a Taperloc with a reduced distal stem. The acetabular component was a fully porous coated threaded hemispheric titanium shell (T-Tap ST). The outcome of every femoral and acetabular component with regard to retention or revision was determined for all 62 THAs. Complete clinical follow-up at a minimum of 20 years was obtained on every living patient. Radiological follow-up was obtained on all but one. Results. Two femoral components (3.2%) required revision. One stem was revised secondary to a periprosthetic fracture one year postoperatively and one was revised for late sepsis. No femoral component was revised for aseptic loosening. Six acetabular components had required revision, five for aseptic loosening. One additional acetabular component was revised for sepsis. Radiologically, all femoral components remained well fixed. One acetabular was judged loose by radiological criteria. The mean Harris Hip Score improved from 46 points (30 to 67) preoperatively to 89 points (78 to 100) at final follow-up. With revision for aseptic loosening as the endpoint, survival of the acetabular component was 95% (95% confidence interval (CI) 90 to 98) at 25 years. Femoral component survival was 100%. Conclusion. The most significant finding of this report was the low prevalence of aseptic loosening and revision of the femoral component at a mean follow-up of 22 years. A second important finding was the survival of over 90% of the hemispheric threaded ring acetabular components. While these shells remain controversial, in this series they performed well. Cite this article: Bone Jt Open 2021;2(1):33–39


Bone & Joint Research
Vol. 7, Issue 7 | Pages 468 - 475
1 Jul 2018
He Q Sun H Shu L Zhu Y Xie X Zhan Y Luo C

Objectives. Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Methods. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated. Results. The DFCI, as a ratio, had higher reliability than the CBTavg. Both showed significant correlation with BMD and T-score. When compared with DFCI, CBTavg showed better correlation and was better for predicting osteoporosis and osteopenia. Conclusion. The CBTavg and DFCI are simple and reliable screening tools for the prediction of osteoporosis and osteopenia. The CBTavg is more accurate but the DFCI is easier to use in clinical practice. Cite this article: Q-F. He, H. Sun, L-Y. Shu, Y. Zhu, X-T. Xie, Y. Zhan, C-F. Luo. Radiographic predictors for bone mineral loss: Cortical thickness and index of the distal femur. Bone Joint Res 2018;7:468–475. DOI: 10.1302/2046-3758.77.BJR-2017-0332.R1


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 593 - 601
1 Jun 2023
Scott CEH Yapp LZ Howard T Patton JT Moran M

Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty.

Cite this article: Bone Joint J 2023;105-B(6):593–601.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases.

Cite this article: Bone Joint J 2024;106-B(6):525–531.