Advertisement for orthosearch.org.uk
Results 321 - 340 of 419
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1272 - 1278
1 Oct 2006
Giannoudis PV Schneider E

Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 993 - 996
1 Aug 2006
Kesteris U Aspenberg P

During revision total hip replacement using morcellised compacted bone allograft, 16 patients were randomised to receive a graft which had been rinsed in either an ibandronate solution or in saline. Patients were assessed by dual energy x-ray absorptiometry after operation and at 3, 6, 12 and 24 months. A region of interest between the tip of the femoral stem and the distal plastic plug was chosen to measure the changes in bone density over time. The study was double-blinded. In all the control patients the bone density decreased during the first three months and then remained constant at this lower level. A large proportion of the mass of the bone graft was lost. In contrast, all patients with grafts treated with bisphosphonate showed a slight increase in bone density. The difference between the groups was highly significant at all points in time.

We conclude that rinsing the graft in a bisphosphonate solution prevents its resorption and may therefore reduce the risk of mechanical failure. The treatment is simple, inexpensive, and appears virtually free of risk.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1561 - 1566
1 Dec 2007
Nowicki P Chaudhary H

Avascular necrosis of the femoral head creates considerable morbidity in successful renal transplant recipients who are generally young and expect active lifestyles. Total hip replacement is considered the treatment of choice in these patients, but surgeons may be wary because of a supposed increase in the risk of infection and other complications.

A review of the literature reveals that cemented hip arthroplasty provides good to excellent functional outcomes for renal transplant patients. Most authors have found that the risk of infection is not increased despite chronic immunosuppression, but the rates of general complications are and should be anticipated and treated. There is a high rate of early failure in these patients because of their young age and diffuse osteopenia as a result of secondary hyperparathyroidism related to the underlying renal disease and chronic steroid use. Recent studies have found that despite decreased bone stock in these patients, porous-coated prostheses are not contraindicated.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm3) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations.

In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives

This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone.

Methods

A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1150 - 1156
1 Aug 2005
Hayashi K Fotovati A Ali SA Oda K Oida H Naito M

The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats.

Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month.

The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 467 - 471
1 Apr 2006
Leichtle UG Leichtle CI Schmidt B Martini F

Peri-prosthetic bone loss caused by stress shielding may be associated with aseptic loosening of femoral components. In order to increase primary stability and to reduce stress shielding, a three-dimensional, cementless individual femoral (Evolution K) component was manufactured using pre-operative CT scans. Using dual energy x-ray absorptiometry, peri-prosthetic bone density was measured in 43 patients, three months, six months, 3.6 and 4.6 years after surgery. At final follow-up there was a significant reduction in mean bone density in the proximal Gruen zones of −30.3% (zone 7) and −22.8% (zone 1). The density in the other zones declined by a mean of between −4% and −16%. We conclude that the manufacture of a three-dimensional, custom-made femoral component could not prevent a reduction in peri-prosthetic bone density.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 616 - 621
1 May 2011
O’Neill F Condon F McGloughlin T Lenehan B Coffey JC Walsh M

We biomechanically investigated whether the standard dynamic hip screw (DHS) or the DHS blade achieves better fixation in bone with regard to resistance to pushout, pullout and torsional stability. The experiments were undertaken in an artificial bone substrate in the form of polyurethane foam blocks with predefined mechanical properties. Pushout tests were also repeated in cadaveric femoral heads. The results showed that the DHS blade outperformed the DHS with regard to the two most important characteristics of implant fixation, namely resistance to pushout and rotational stability.

We concluded that the DHS blade was the superior implant in this study.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 595 - 602
1 May 2015
McCalden RW Korczak A Somerville L Yuan X Naudie DD

This was a randomised controlled trial studying the safety of a new short metaphyseal fixation (SMF) stem. We hypothesised that it would have similar early clinical results and micromovement to those of a standard-length tapered Synergy metaphyseal fixation stem. Using radiostereometric analysis (RSA) we compared the two stems in 43 patients. A short metaphyseal fixation stem was used in 22 patients and a Synergy stem in 21 patients. No difference was found in the clinical outcomes pre- or post-operatively between groups. RSA showed no significant differences two years post-operatively in mean micromovement between the two stems (except for varus/valgus tilt at p = 0.05) (subsidence 0.94 mm (sd 1.71) vs 0.32 mm (sd 0.45), p = 0.66; rotation 0.96° (sd 1.49) vs 1.41° (sd 2.95), p = 0.88; and total migration 1.09 mm (sd 1.74) vs 0.73 mm (sd 0.72), p = 0.51). A few stems (four SMF and three Synergy) had initial migration > 1.0 mm but stabilised by three to six months, with the exception of one SMF stem which required revision three years post-operatively. For most stems, total micromovement was very low at two years (subsidence < 0.5 mm, rotation < 1.0°, total migration < 0.5 mm), which was consistent with osseous ingrowth. The small sample makes it difficult to confirm the universal applicability of or elucidate the potential contraindications to the use of this particular new design of stem.

Cite this article: Bone Joint J 2015; 97-B:595–602.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 118 - 121
1 Nov 2014
Lachiewicz PF Watters TS

Metaphyseal bone loss is common with revision total knee replacement (RTKR). Using the Anderson Orthopaedic Research Institute (AORI) classification, type 2-B and type 3 defects usually require large metal blocks, bulk structural allograft or highly porous metal cones. Tibial and femoral trabecular metal metaphyseal cones are a unique solution for large bone defects. These cones substitute for bone loss, improve metaphyseal fixation, help correct malalignment, restore the joint line and may permit use of a shorter stem. The technique for insertion involves sculpturing of the remaining bone with a high speed burr and rasp, followed by press-fit of the cone into the metaphysis. The fixation and osteoconductive properties of the porous cone outer surface allow ingrowth and encourage long-term biological fixation. The revision knee component is then cemented into the porous cone inner surface, which provides superior fixation compared with cementing into native but deficient metaphyseal bone. The advantages of the cone compared with allograft include: technical ease, biological fixation, no resorption, and possibly a lower risk of infection. The disadvantages include: difficult extraction and relatively short-term follow-up. Several studies using cones report promising short-term results for the reconstruction of large bone defects in RTKR.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):118–21.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 261 - 266
1 Feb 2005
Földhazy Z Arndt A Milgrom C Finestone A Ekenman I

Strains applied to bone can stimulate its development and adaptation. High strains and rates of strain are thought to be osteogenic, but the specific dose response relationship is not known. In vivo human strain measurements have been performed in the tibia to try to identify optimal bone strengthening exercises for this bone, but no measurements have been performed in the distal radial metaphysis, the most frequent site of osteoporotic fractures. Using a strain gauged bone staple, in vivo dorsal metaphyseal radial strains and rates of strain were measured in ten female patients during activities of daily living, standard exercises and falls on extended hands. Push-ups and falling resulted in the largest compression strains (median 1345 to 3146 με, equivalent to a 0.1345% to 0.3146% length change) and falling exercises in the largest strain rates (18 582 to 45 954 με/s). On the basis of their high strain and/or strain rates these or variations of these exercises may be appropriate for distal radial metaphyseal bone strengthening.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 391 - 397
1 Mar 2015
van Embden D Stollenwerck GANL Koster LA Kaptein BL Nelissen RGHH Schipper IB

The aim of this study was to quantify the stability of fracture-implant complex in fractures after fixation. A total of 15 patients with an undisplaced fracture of the femoral neck, treated with either a dynamic hip screw or three cannulated hip screws, and 16 patients with an AO31-A2 trochanteric fracture treated with a dynamic hip screw or a Gamma Nail, were included. Radiostereometric analysis was used at six weeks, four months and 12 months post-operatively to evaluate shortening and rotation.

Migration could be assessed in ten patients with a fracture of the femoral neck and seven with a trochanteric fracture. By four months post-operatively, a mean shortening of 5.4 mm (-0.04 to 16.1) had occurred in the fracture of the femoral neck group and 5.0 mm (-0.13 to 12.9) in the trochanteric fracture group. A wide range of rotation occurred in both types of fracture. Right-sided trochanteric fractures seem more rotationally stable than left-sided fractures.

This prospective study shows that migration at the fracture site occurs continuously during the first four post-operative months, after which stabilisation occurs. This information may allow the early recognition of patients at risk of failure of fixation.

Cite this article: Bone Joint J 2015;97-B:391–7.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 434 - 441
1 Apr 2015
Shabani F Farrier AJ Krishnaiyan R Hunt C Uzoigwe CE Venkatesan M

Drug therapy forms an integral part of the management of many orthopaedic conditions. However, many medicines can produce serious adverse reactions if prescribed inappropriately, either alone or in combination with other drugs. Often these hazards are not appreciated. In response to this, the European Union recently issued legislation regarding safety measures which member states must adopt to minimise the risk of errors of medication.

In March 2014 the Medicines and Healthcare products Regulatory Agency and NHS England released a Patient Safety Alert initiative focussed on errors of medication. There have been similar initiatives in the United States under the auspices of The National Coordinating Council for Medication Error and The Joint Commission on the Accreditation of Healthcare Organizations. These initiatives have highlighted the importance of informing and educating clinicians.

Here, we discuss common drug interactions and contra-indications in orthopaedic practice. This is germane to safe and effective clinical care.

Cite this article: Bone Joint J 2015;97-B:434–41.


Bone & Joint Research
Vol. 4, Issue 8 | Pages 137 - 144
1 Aug 2015
Hamilton DF Giesinger JM Patton JT MacDonald DJ Simpson AHRW Howie CR Giesinger K

Objectives

The Oxford Hip and Knee Scores (OHS, OKS) have been demonstrated to vary according to age and gender, making it difficult to compare results in cohorts with different demographics. The aim of this paper was to calculate reference values for different patient groups and highlight the concept of normative reference data to contextualise an individual’s outcome.

Methods

We accessed prospectively collected OHS and OKS data for patients undergoing lower limb joint arthroplasty at a single orthopaedic teaching hospital during a five-year period. T-scores were calculated based on the OHS and OKS distributions.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 229 - 234
1 Feb 2015
Choi W Lee HJ Kim D Lee C Lee BG Kim J Lee K

We performed a retrospective study to determine the effect of osteoporosis on the functional outcome of osteoporotic distal radial fractures treated with a volar locking plate. Between 2009 and 2012 a total of 90 postmenopausal women with an unstable fracture of the distal radius treated with a volar locking plate were studied. Changes in the radiological parameters of 51 patients with osteoporosis (group 1, mean age 66.9, mean T-score –3.16 (sd 0.56)) were not significantly different from those in 39 patients without osteoporosis (group 2, mean age 61.1, mean T-score –1.72 (sd 0.57)). The mean Disabilities of the Arm, Shoulder and Hand (DASH) score at final follow-up was 11.5 (sd 12.2) in group 1 and 10.5 (sd 13.25) in group 2. The mean modified Mayo wrist score at final follow-up was 79.0 (sd 14.04) in group 1 and 82.6 (sd 13.1) in group 2. However, this difference was not statistically significant (p = 0.35 for DASH score, p = 0.2 for modified Mayo wrist score). Univariable and multivariable logistic regression analysis showed that only the step-off of the radiocarpal joint was related to both a poor DASH and modified Mayo wrist score. Pearson’s correlation coefficient showed a weak negative relationship only between the T-score and the change in volar tilt (intraclass coefficient –0.26, p = 0.02).

We found that osteoporosis does not have a negative effect on the functional outcome and additional analysis did not show a correlation between T-score and outcome.

Cite this article: Bone Joint J 2015;97-B:229–34.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis.

In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone.

We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 896 - 901
1 Jul 2014
Reiner T Jaeger S Schwarze M Klotz MC Beckmann NA Bitsch RG

Aseptic loosening of the femoral component is an important indication for revision surgery in unicompartmental knee replacement (UKR). A new design of femoral component with an additional peg was introduced for the cemented Oxford UKR to increase its stability. The purpose of this study was to compare the primary stability of the two designs of component.

Medial Oxford UKR was performed in 12 pairs of human cadaver knees. In each pair, one knee received the single peg and one received the twin peg design. Three dimensional micromotion and subsidence of the component in relation to the bone was measured under cyclical loading at flexion of 40° and 70° using an optical measuring system. Wilcoxon matched pairs signed-rank test was performed to detect differences between the two groups.

There was no significant difference in the relative micromotion (p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and 0.176, respectively) of the component between the two groups at both angles of flexion. Both designs of component offered good strength of fixation in this cadaver study.

Cite this article: Bone Joint J 2014;96-B:896–901.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 863 - 867
1 Jul 2014
Aitken SA Hutchison JD McQueen MM Court-Brown CM

Epidemiological studies enhance clinical practice in a number of ways. However, there are many methodological difficulties that need to be addressed in designing a study aimed at the collection and analysis of data concerning fractures and other injuries. Most can be managed and errors minimised if careful attention is given to the design and implementation of the research.

Cite this article: Bone Joint J 2014;96-B:863–7.