A complete cement mantle is important for the longevity of a total hip replacement. In the minimally-invasive direct anterior approach used at the Innsbruck University hospital, the femoral component has to be inserted into the femoral canal by an angulated movement. In a cadaver study, the quality and the extent of the cement mantle surrounding 13 Exeter femoral components implanted straight through a standard anterolateral transgluteal approach were compared with those of 13 similar femoral components implanted in an angulated fashion through a direct anterior approach. A third-generation cementing technique was used. The inner and outer contours of the cement mantles was traced from CT scans and the thickness and cross-sectional area determined. In no case was the cement mantle incomplete. The total mean thickness of the cement mantle was 3.62 mm (95% confidence interval 3.59 to 3.65). The mean thickness in the group using the minimally-invasive approach was 0.16 mm less than that in the anterolateral group. The distribution of the thickness was similar in the two groups. The mean thickness was less on the anteromedial and anterolateral aspect than on the posterior aspect of the femur. There is no evidence that the angulated introduction of Exeter femoral components in the direct anterior approach in cadavers compromises the quality, extent or thickness of the cement mantle.
We performed a randomised, radiostereometric study comparing two different bone cements, one of which has been sparsely clinically documented. Randomisation of 60 total hip replacements (57 patients) into two groups of 30 was undertaken. All the patients were operated on using a cemented Charnley total hip replacement, the only difference between groups being the bone cement used to secure the femoral component. The two cements used were Palamed G and Palacos R with gentamicin. The patients were followed up with repeated clinical and radiostereometric examinations for two years to assess the micromovement of the femoral component and the clinical outcome. The mean subsidence was 0.18 mm and 0.21 mm, and the mean internal rotation was 1.7° and 2.0° at two years for the Palamed G and Palacos R with gentamicin bone cements, respectively. We found no statistically significant differences between the groups. Micromovement occurred between the femoral component and the cement, while the cement mantle was stable inside the bone. The Harris hip score improved from a mean of 38 points (14 to 54) and 36 (10 to 57) pre-operatively to a mean of 92 (77 to 100) and 91 (63 to 100) at two years in the Palamed G and Palacos R groups, respectively. No differences were found between the groups. Both bone cements provided good initial fixation of the femoral component and good clinical results at two years.
We reviewed 142 consecutive primary total hip replacements implanted into 123 patients between 1988 and 1993 using the Exeter Universal femoral stem. A total of 74 patients (88 hips) had survived for ten years or more and were reviewed at a mean of 12.7 years (10 to 17). There was no loss to follow-up. The rate of revision of the femoral component for aseptic loosening and osteolysis was 1.1% (1 stem), that for revision for any cause was 2.2% (2 stems), and for re-operation for any cause was 21.6% (19 hips). Re-operation was because of failure of the acetabular component in all but two hips. All but one femoral component subsided within the cement mantle to a mean of 1.52 mm (0 to 8.3) at the final follow-up. One further stem had subsided excessively (8 mm) and had lucent lines at the cement-stem and cement-bone interfaces. This was classified as a radiological failure and is awaiting revision. One stem was revised for deep infection and one for excessive peri-articular osteolysis. Defects of the cement mantle (Barrack grade C and D) were found in 28% of stems (25 hips), associated with increased subsidence (p = 0.01), but were not associated with endosteal lysis or failure. Peri-articular osteolysis was significantly related to the degree of polyethylene wear (p <
0.001), which was in turn associated with a younger age (p = 0.01) and male gender (p <
0.001). The use of the Exeter metal-backed acetabular component was a notable failure with 12 of 32 hips (37.5%) revised for loosening. The Harris-Galante components failed with excessive wear, osteolysis and dislocation with 15% revised (5 of 33 hips). Only one of 23 hips with a cemented Elite component (4%) was revised for loosening and osteolysis. Our findings show that the Exeter Universal stem implanted outside the originating centre has excellent medium-term results.
A postal questionnaire was sent to 10 000 patients more than one year after their total knee replacement (TKR). They were assessed using the Oxford knee score and were asked whether they were satisfied, unsure or unsatisfied with their TKR. The response rate was 87.4% (8231 of 9417 eligible questionnaires) and a total of 81.8% (6625 of 8095) of patients were satisfied. Multivariable regression modelling showed that patients with higher scores relating to the pain and function elements of the Oxford knee score had a lower level of satisfaction (p <
0.001), and that ongoing pain was a stronger predictor of this. Female gender and a primary diagnosis of osteoarthritis were found to be predictors of lower levels of patient satisfaction. Differences in the rate of satisfaction were also observed in relation to age, the American Society of Anesthesiologists grade and the type of prosthesis. This study has provided data on the Oxford knee score and the expected levels of satisfaction at one year after TKR. The results should act as a benchmark of practice in the United Kingdom and provide a baseline for peer comparison between institutions.