Advertisement for orthosearch.org.uk
Results 261 - 280 of 457
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 911 - 916
1 Jul 2015
Del Balso C Teeter MG Tan SC Lanting BA Howard JL

Tribocorrosion at the head–neck taper interface – so-called ‘taperosis’ – may be a source of metal ions and particulate debris in metal-on-polyethylene total hip arthroplasty (THA).

We examined the effect of femoral head length on fretting and corrosion in retrieved head–neck tapers in vivo for a minimum of two years (mean 8.7 years; 2.6 to 15.9). A total of 56 femoral heads ranging from 28 mm to 3 mm to 28 mm + 8 mm, and 17 femoral stems featuring a single taper design were included in the study. Fretting and corrosion were scored in three horizontally oriented concentric zones of each taper by stereomicroscopy.

Head length was observed to affect fretting (p = 0.03), with 28 mm + 8 mm femoral heads showing greater total fretting scores than all other head lengths. The central zone of the femoral head bore taper was subject to increased fretting damage (p = 0.01), regardless of head length or stem offset. High-offset femoral stems were associated with greater total fretting of the bore taper (p = 0.04).

Increased fretting damage is seen with longer head lengths and high-offset femoral stems, and occurs within a central concentric zone of the femoral head bore taper. Further investigation is required to determine the effect of increased head size, and variations in head–neck taper design.

Cite this article: Bone Joint J 2015; 97-B:911–16.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 3 - 6
1 Nov 2013
Wassef AJ Schmalzried TP

A modular femoral head–neck junction has practical advantages in total hip replacement. Taper fretting and corrosion have so far been an infrequent cause of revision. The role of design and manufacturing variables continues to be debated. Over the past decade several changes in technology and clinical practice might result in an increase in clinically significant taper fretting and corrosion. Those factors include an increased usage of large diameter (36 mm) heads, reduced femoral neck and taper dimensions, greater variability in taper assembly with smaller incision surgery, and higher taper stresses due to increased patient weight and/or physical activity. Additional studies are needed to determine the role of taper assembly compared with design, manufacturing and other implant variables.

Cite this article: Bone Joint J 2013;95-B, Supple A:3–6.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone.

Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 70 - 72
1 Nov 2014
Callaghan JJ Liu SS Phruetthiphat O

A common situation presenting to the orthopaedic surgeon today is a worn acetabular liner with substantial acetabular and pelvic osteolysis. The surgeon has many options for dealing with osteolytic defects. These include allograft, calcium based substitutes, demineralised bone matrix, or combinations of these options with or without addition of platelet rich plasma. To date there are no clinical studies to determine the efficacy of using bone-stimulating materials in osteolytic defects at the time of revision surgery and there are surprisingly few studies demonstrating the clinical efficacy of these treatment options. Even when radiographs appear to demonstrate incorporation of graft material CT studies have shown that incorporation is incomplete. The surgeon, in choosing a graft material for a surgical procedure must take into account the efficacy, safety, cost and convenience of that material.

Cite this article: Bone Joint J 2014;96-B (11 Suppl A):70–2.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives

Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing.

The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets.

DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory.

Materials and Methods

We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 572 - 579
1 May 2011
Haddad FS Thakrar RR Hart AJ Skinner JA Nargol AVF Nolan JF Gill HS Murray DW Blom AW Case CP

Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 755 - 759
1 Jun 2011
Brennan SA Brabazon D O’Byrne JM

We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment.

Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 307 - 313
1 Jul 2016
Sandgren B Skorpil M Nowik P Olivecrona H Crafoord J Weidenhielm L Persson A

Objectives

Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components.

Materials and Methods

A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 205 - 209
1 Feb 2011
Willis-Owen CA Keene GC Oakeshott RD

Metallosis is a rare cause of failure after total knee replacement and has only previously been reported when there has been abnormal metal-on-metal contact. We describe 14 patients (15 knees) whose total knee replacement required revision for a new type of early failure caused by extensive metallosis. A modification of a cementless rotating platform implant, which had previously had excellent long-term survival, had been used in each case. The change was in the form of a new porous-beaded surface on the femoral component to induce cementless fixation, which had been used successfully in the fixation of acetabular and tibial components. This modification appeared to have resulted in metallosis due to abrasive two-body wear. The component has subsequently been recalled and is no longer in use. The presentation, investigation, and findings at revision are described and a possible aetiology and its implications are discussed.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 1 - 2
1 Jan 2016
Haddad FS Manktelow ARJ Skinner JA


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 593 - 600
1 May 2011
Kuzyk PRT Saccone M Sprague S Simunovic N Bhandari M Schemitsch EH

We conducted a systematic review and meta-analysis of randomised controlled trials comparing cross-linked with conventional polyethylene liners for total hip replacement in order to determine whether these liners reduce rates of wear, radiological evidence of osteolysis and the need for revision. The MEDLINE, EMBASE and COCHRANE databases were searched from their inception to May 2010 for all trials involving the use of cross-linked polyethylene in total hip replacement. Eligibility for inclusion in the review included the random allocation of treatments, the use of cross-linked and conventional polyethylene, and radiological wear as an outcome measure. The pooled mean differences were calculated for bedding-in, linear wear rate, three-dimensional linear wear rate, volumetric wear rate and total linear wear. Pooled risk ratios were calculated for radiological osteolysis and revision hip replacement. A search of the literature identified 194 potential studies, of which 12 met the inclusion criteria. All reported a significant reduction in radiological wear for cross-linked polyethylene.

The pooled mean differences for linear rate of wear, three-dimensional linear rate of wear, volumetric wear rate and total linear wear were all significantly reduced for cross-linked polyethylene. The risk ratio for radiological osteolysis was 0.40 (95% confidence interval 0.27 to 0.58; I2 = 0%), favouring cross-linked polyethylene. The follow-up was not long enough to show a difference in the need for revision surgery.


Bone & Joint Research
Vol. 1, Issue 6 | Pages 125 - 130
1 Jun 2012
Bøe BG Støen RØ Solberg LB Reinholt FP Ellingsen JE Nordsletten L

Objectives

An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits.

Methods

A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 907 - 914
1 Jul 2009
Koivu H Kohonen I Sipola E Alanen K Vahlberg T Tiusanen H

Between 2002 and 2008, 130 consecutive ankles were replaced with an hydroxyapatite (HA) and titanium-HA-coated Ankle Evolutive System total ankle prosthesis. Plain radiographs were analysed by two independent observers. Osteolytic lesions were classified by their size and location, with cavities > 10 mm in diameter considered to be ‘marked’. CT scanning was undertaken in all patients with marked osteolysis seen on the plain radiographs.

Osteolytic lesions were seen on the plain films in 48 (37%) and marked lesions in 27 (21%) ankles. The risk for osteolysis was found to be 3.1 (95% confidence interval 1.6 to 5.9) times higher with implants with Ti-HA porous coating.

Care should be taken with ankle arthroplasty until more is known about the reasons for these severe osteolyses.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 617 - 623
1 May 2010
McNamara I Deshpande S Porteous M

The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using impaction grafting have been retrospectively reviewed. A 1:1 mixture of frozen, ground irradiated bone graft and Apapore 60, a synthetic bone graft substitute, was used in all cases. There were 13 complex primary and 37 revision procedures with a mean follow-up of five years (3.4 to 7.6). The clinical survival rate was 100%, with improvements in the mean Harris Hip Scores for pain and function. Radiologically, 30 acetabular grafts showed evidence of incorporation, ten had radiolucent lines and two acetabular components migrated initially before stabilising.

Acetabular reconstruction in both primary and revision surgery using a 1:1 mixture of frozen, ground, irriadiated bone and Apapore 60 appears to be a reliable method of managing acetabular defects. Longer follow-up will be required to establish whether this technique is as effective as using fresh-frozen allograft.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 609 - 615
1 May 2013
Cadossi M Chiarello E Savarino L Tedesco G Baldini N Faldini C Giannini S

We undertook a randomised controlled trial to compare bipolar hemiarthroplasty (HA) with a novel total hip replacement (THR) comprising a polycarbonate–urethane (PCU) acetabular component coupled with a large-diameter metal femoral head for the treatment of displaced fractures of the femoral neck in elderly patients. Functional outcome, assessed with the Harris hip score (HHS) at three months and then annually after surgery, was the primary endpoint. Rates of revision and complication were secondary endpoints.

Based on a power analysis, 96 consecutive patients aged > 70 years were randomised to receive either HA (49) or a PCU-THR (47). The mean follow-up was 30.1 months (23 to 50) and 28.6 months (22 to 52) for the HA and the PCU group, respectively.

The HHS showed no statistically significant difference between the groups at every follow-up. Higher pain was recorded in the PCU group at one and two years’ follow-up (p = 0.006 and p = 0.019, respectively). In the HA group no revision was performed. In the PCU-THR group six patients underwent revision and one patient is currently awaiting re-operation. The three-year survival rate of the PCU-THR group was 0.841 (95% confidence interval 0.680 to 0.926).

Based on our findings we do not recommend the use of the PCU acetabular component as part of the treatment of patients with fractures of the femoral neck.

Cite this article: Bone Joint J 2013;95-B:609–15.


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives

There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite.

Methods

BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA).


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 14 - 20
1 Jan 2016
Zywiel MG Cherian JJ Banerjee S Cheung AC Wong F Butany J Gilbert C Overgaard C Syed K Jacobs JJ Mont MA

As adverse events related to metal on metal hip arthroplasty have been better understood, there has been increased interest in toxicity related to the high circulating levels of cobalt ions. However, distinguishing true toxicity from benign elevations in cobalt levels can be challenging. The purpose of this review is to examine the use of cobalt alloys in total hip arthroplasty, to review the methods of measuring circulating cobalt levels, to define a level of cobalt which is considered pathological and to review the pathophysiology, risk factors and treatment of cobalt toxicity. To the best of our knowledge, there are 18 published cases where cobalt metal ion toxicity has been attributed to the use of cobalt-chromium alloys in hip arthroplasty. Of these cases, the great majority reported systemic toxic reactions at serum cobalt levels more than 100 μg/L. This review highlights some of the clinical features of cobalt toxicity, with the goal that early awareness may decrease the risk factors for the development of cobalt toxicity and/or reduce its severity.

Take home message: Severe adverse events can arise from the release of cobalt from metal-on-metal arthroplasties, and as such, orthopaedic surgeons should not only be aware of the presenting problems, but also have the knowledge to treat appropriately.

Cite this article: Bone Joint J 2016;98-B:14–20.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 502 - 505
1 Apr 2008
Khan WS Agarwal M Malik AA Cox AG Denton J Holt EM

Metallosis after shoulder replacement has not previously been described in the literature. We report a patient who developed extensive metallosis after implantation of an uncemented Nottingham shoulder replacement. He underwent a revision procedure.

Examination of the retrieved prosthesis showed that the titanium porous coating was separating from the humeral stem and becoming embedded in the ultra-high-molecular-weight polyethylene glenoid component, resulting in abrasive wear of the humeral component. There was metallosis despite exchange of the modular humeral head. Both components had to be exchanged to resolve the problem.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.