The aim of this study was to evaluate cartilaginous patellotrochlear congruence and patellofemoral alignment parameters after deepening trochleoplasty in severe trochlear dysplasia. The study group comprised 20 patients (two male, 18 female; mean age 24 years (16 to 39)) who underwent deepening trochleoplasty and medial patellofemoral ligament (MPFL) reconstruction for the treatment of recurrent lateral patellar dislocation due to severe trochlear dysplasia (Dejour type B to D). Pre- and postoperative MRI investigations of the study group were compared with MRI data of 20 age- and gender-matched control patients (two male, 18 female; mean age 27 years (18 to 44)) regarding the patellotrochlear contact ratio, patellotrochlear contact area, posterior patellar edge-trochlear groove ratio, and patellar tilt.Aims
Patients and Methods
The aim of this study was to examine whether hips with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH) have significant asymmetry in femoral length, and to determine potential related factors. We enrolled 90 patients (82 female, eight male) with DDH showing unilateral OA changes, and 43 healthy volunteers (26 female, 17 male) as controls. The mean age was 61.8 years (39 to 93) for the DDH groups, and 71.2 years (57 to 84) for the control group. Using a CT-based coordinate measurement system, we evaluated the following vertical distances: top of the greater trochanter to the knee centre (femoral length GT), most medial prominence of the lesser trochanter to the knee centre (femoral length LT), and top of the greater trochanter to the medial prominence of the lesser trochanter (intertrochanteric distance), along with assessments of femoral neck anteversion and neck shaft angle.Aims
Patients and Methods
The primary aim of this study was to define and quantify three
new measurements to indicate the position of the greater trochanter.
Secondary aims were to define ‘functional antetorsion’ as it relates
to abductor function in populations both with and without torsional
abnormality. Three new measurements, functional antetorsion, posterior tilt,
and posterior translation of the greater trochanter, were assessed
from 61 CT scans of cadaveric femurs, and their reliability determined.
These measurements and their relationships were also evaluated in
three groups of patients: a control group (n = 22), a ‘high-antetorsion’ group
(n = 22) and a ‘low-antetorsion’ group (n = 10).Aims
Patients and Methods
The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI. Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion.Aims
Patients and Methods
Using 90% of final height as a benchmark, we sought to develop
a quick, quantitative and reproducible method of estimating skeletal
maturity based on topographical changes in the distal femoral physis. Serial radiographs of the distal femoral physis three years prior
to, during, and two years following the chronological age associated
with 90% of final height were analyzed in 81 healthy children. The
distance from the tip of the central peak of the distal femoral
physis to a line drawn across the physis was normalized to the physeal width.Aims
Patients and Methods
In patients where the proximal femur shows gross deformity due
to degenerative changes or fracture, the contralateral femur is
often used to perform preoperative templating for hip arthroplasty.
However, femurs may not be symmetrical: the aim of this study was
to determine the degree of variation between hips in healthy individuals and
to determine whether it is affected by demographic parameters. CT-scan based modelling was used to examine the pelvis and bilateral
femurs of 345 patients (211 males, 134 women; mean age 62 years
(standard deviation (Aims
Materials and Methods
There is an increased risk of fracture following
osteoplasty of the femoral neck for cam-type femoroacetabular impingement
(FAI). Resection of up to 30% of the anterolateral head–neck junction
has previously been considered to be safe, however, iatrogenic fractures
have been reported with resections within these limits. We re-evaluated
the amount of safe resection at the anterolateral femoral head–neck
junction using a biomechanically consistent model. In total, 28 composite bones were studied in four groups: control,
10% resection, 20% resection and 30% resection. An axial load was
applied to the adducted and flexed femur. Peak load, deflection
at time of fracture and energy to fracture were assessed using comparison
groups. There was a marked difference in the mean peak load to fracture
between the control group and the 10% resection group (p <
0.001).
The control group also tolerated significantly more deflection before
failure (p <
0.04). The mean peak load (p = 0.172), deflection
(p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between
the 10%, 20%, and 30% resection groups. Any resection of the anterolateral quadrant of the femoral head–neck
junction for FAI significantly reduces the load-bearing capacity
of the proximal femur. After initial resection of cortical bone,
there is no further relevant loss of stability regardless of the
amount of trabecular bone resected. Based on our findings we recommend any patients who undergo anterolateral
femoral head–neck junction osteoplasty should be advised to modify
their post-operative routine until cortical remodelling occurs to
minimise the subsequent fracture risk. Cite this article:
Following the resection of an extensive amount of bone in the
treatment of a tumour, the residual segment may be insufficient
to accept a standard length intramedullary cemented stem. Short-stemmed
endoprostheses conceivably have an increased risk of aseptic loosening.
Extra-cortical plates have been added to minimise this risk by supplementing
fixation. The aim of this study was to investigate the survivorship
of short-stemmed endoprostheses and extra-cortical plates. The study involved 37 patients who underwent limb salvage surgery
for a primary neoplasm of bone between 1998 and 2013. Endoprosthetic
replacement involved the proximal humerus in nine, the proximal
femur in nine, the distal femur in 13 and the proximal tibia in
six patients. There were 12 primary (32%) and 25 revision procedures (68%).
Implant survivorship was compared with matched controls. The amount
of bone that was resected was >
70% of its length and statistically
greater than the standard control group at each anatomical site.Aims
Patients and Methods
An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans.Objectives
Materials and Methods
It is becoming increasingly common for a patient
to have ipsilateral hip and knee replacements. The inter-prosthetic (IP)
distance, the distance between the tips of hip and knee prostheses,
has been thought to be associated with an increased risk of IP fracture.
Small gap distances are generally assumed to act as stress risers,
although there is no real biomechanical evidence to support this. The purpose of this study was to evaluate the influence of IP
distance, cortical thickness and bone mineral density on the likelihood
of an IP femoral fracture. A total of 18 human femur specimens were randomised into three
groups by bone density and cortical thickness. For each group, a
defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing
the appropriate lengths of component. The maximum fracture strength
was determined using a four-point bending test. The fracture force of all three groups was similar (p = 0.498).
There was a highly significant correlation between the cortical
area and the fracture strength (r = 0.804, p <
0.001), whereas
bone density showed no influence. This study suggests that the IP distance has little influence
on fracture strength in IP femoral fractures: the thickness of the
cortex seems to be the decisive factor. Cite this article:
We investigated a new intramedullary locking
nail that allows the distal interlocking screws to be locked to
the nail. We compared fixation using this new implant with fixation
using either a conventional nail or a locking plate in a laboratory
simulation of an osteoporotic fracture of the distal femur. A total
of 15 human cadaver femora were used to simulate an AO 33-A3 fracture
pattern. Paired specimens compared fixation using either a locking
or non-locking retrograde nail, and using either a locking retrograde
nail or a locking plate. The constructs underwent cyclical loading
to simulate single-leg stance up to 125 000 cycles. Axial and torsional
stiffness and displacement, cycles to failure and modes of failure
were recorded for each specimen. When compared with locking plate
constructs, locking nail constructs had significantly longer mean
fatigue life (75 800 cycles ( The new locking retrograde femoral nail showed better stiffness
and fatigue life than locking plates, and superior fatigue life
to non-locking nails, which may be advantageous in elderly patients. Cite this article:
The aim of this paper is to review the evidence relating to the
anatomy of the proximal femur, the geometry of the fracture and
the characteristics of implants and methods of fixation of intertrochanteric
fractures of the hip. Relevant papers were identified from appropriate clinical databases
and a narrative review was undertaken.Aims
Materials and Methods
We report our experience of revision total hip
replacement (THR) using the Revitan curved modular titanium fluted revision
stem in patients with a full spectrum of proximal femoral defects.
A total of 112 patients (116 revisions) with a mean age of 73.4
years (39 to 90) were included in the study. The mean follow-up
was 7.5 years (5.3 to 9.1). A total of 12 patients (12 hips) died
but their data were included in the survival analysis, and four
patients (4 hips) were lost to follow-up. The clinical outcome,
proximal bone regeneration and subsidence were assessed for 101
hips. The mean Harris Hip Score was 88.2 (45.8 to 100) after five years
and there was an increase of the mean Barnett and Nordin-Score,
a measure of the proximal bone regeneration, of 20.8 (-3.1 to 52.7).
Five stems had to be revised (4.3%), three (2.9%) showed subsidence,
five (4.3%) a dislocation and two of 85 aseptic revisions (2.3%)
a periprosthetic infection. At the latest follow-up, the survival with revision of the stem
as the endpoint was 95.7% (95% confidence interval 91.9% to 99.4%)
and with aseptic loosening as the endpoint, was 100%. Peri-prosthetic
fractures were not observed. We report excellent results with respect to subsidence, the risk
of fracture, and loosening after femoral revision using a modular
curved revision stem with distal cone-in-cone fixation. A successful
outcome depends on careful pre-operative planning and the use of
a transfemoral approach when the anatomy is distorted or a fracture
is imminent, or residual cement or a partially-secured existing
stem cannot be removed. The shortest appropriate stem should, in
our opinion, be used and secured with >
3 cm fixation at the femoral
isthmus, and distal interlocking screws should be used for additional
stability when this goal cannot be realised. Cite this article:
Concerns have been raised that deformation of
acetabular shells may disrupt the assembly process of modular prostheses.
In this study we aimed to examine the effect that the strength of
bone has on the amount of deformation of the acetabular shell. The
hypothesis was that stronger bone would result in greater deformation.
A total of 17 acetabular shells were inserted into the acetabula
of eight cadavers, and deformation was measured using an optical
measuring system. Cores of bone from the femoral head were taken
from each cadaver and compressed using a materials testing machine.
The highest peak modulus and yield stress for each cadaver were used
to represent the strength of the bone and compared with the values
for the deformation and the surgeon’s subjective assessment of the
hardness of the bone. The mean deformation of the shell was 129
µm (3 to 340). No correlation was found between deformation and
either the maximum peak modulus (r² = 0.011, t = 0.426, p = 0.676) or
the yield stress (r² = 0.024, t = 0.614, p = 0.549) of the bone.
Although no correlation was found between the strength of the bone
and deformation, the values for the deformation observed could be
sufficient to disrupt the assembly process of modular acetabular
components. Cite this article:
The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology. Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s Objectives
Methods
Restoration of leg length and offset is an important
goal in total hip replacement. This paper reports a calliper-based technique
to help achieve these goals by restoring the location of the centre
of the femoral head. This was validated first by using a co-ordinate
measuring machine to see how closely the calliper technique could
record and restore the centre of the femoral head when simulating
hip replacement on Sawbone femur, and secondly by using CT in patients
undergoing hip replacement. Results from the co-ordinate measuring machine showed that the
centre of the femoral head was predicted by the calliper to within
4.3 mm for offset (mean 1.6 (95% confidence interval (CI) 0.4 to
2.8)) and 2.4 mm for vertical height (mean -0.6 (95% CI -1.4 to
0.2)).
The CT scans showed that offset and vertical height were restored
to within 8 mm
(mean -1 (95% CI -2.1 to 0.6)) and -14 mm (mean 4 (95% CI 1.8 to
4.3)), respectively. Accurate assessment and restoration of the centre of the femoral
head is feasible with a calliper. It is quick, inexpensive, simple
to use and can be applied to any design of femoral component.
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods
We retrospectively reviewed 101 consecutive patients
with 114 femoral tumours treated by massive bone allograft at our
institution between 1986 and 2005. There were 49 females and 52
males with a mean age of 20 years (4 to 74). At a median follow-up
of 9.3 years (2 to 19.8), 36 reconstructions (31.5%) had failed.
The allograft itself failed in 27 reconstructions (24%). Mechanical complications such as delayed union, fracture and
failure of fixation were studied. The most adverse factor on the
outcome was the use of intramedullary nails, followed by post-operative
chemotherapy, resection length >
17 cm and age >
18 years at the
time of intervention. The simultaneous use of a vascularised fibular
graft to protect the allograft from mechanical complications improved
the outcome, but the use of intramedullary cementing was not as
successful. In order to improve the strength of the reconstruction and to
advance the biology of host–graft integration, we suggest avoiding
the use of intramedullary nails and titanium plates, but instead
using stainless steel plates, as these gave better results. The
use of a supplementary vascularised fibular graft should be strongly
considered in adult patients with resection >
17 cm and in those
who require post-operative chemotherapy.
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its stability.
The purpose of this study was to compare the primary stability of
the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver
knees. In each pair, one knee received the single peg and one received
the twin peg design. Three dimensional micromotion and subsidence
of the component in relation to the bone was measured under cyclical
loading at flexion of 40° and 70° using an optical measuring system.
Wilcoxon matched pairs signed-rank test was performed to detect
differences between the two groups. There was no significant difference in the relative micromotion
(p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and
0.176, respectively) of the component between the two groups at
both angles of flexion. Both designs of component offered good strength
of fixation in this cadaver study. Cite this article: