Advertisement for orthosearch.org.uk
Results 181 - 200 of 332
Results per page:
Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives

Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE).

Materials and Methods

A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives

We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis.

Methods

The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 558 - 563
1 Apr 2015
Windolf M Fischer MF Popp AW Matthys R Schwieger K Gueorguiev B Hunter JB Slongo TF

End caps are intended to prevent nail migration (push-out) in elastic stable intramedullary nailing. The aim of this study was to investigate the force at failure with and without end caps, and whether different insertion angles of nails and end caps would alter that force at failure.

Simulated oblique fractures of the diaphysis were created in 15 artificial paediatric femurs. Titanium Elastic Nails with end caps were inserted at angles of 45°, 55° and 65° in five specimens for each angle to create three study groups. Biomechanical testing was performed with axial compression until failure. An identical fracture was created in four small adult cadaveric femurs harvested from two donors (both female, aged 81 and 85 years, height 149 cm and 156 cm, respectively). All femurs were tested without and subsequently with end caps inserted at 45°.

In the artificial femurs, maximum force was not significantly different between the three groups (p = 0.613). Push-out force was significantly higher in the cadaveric specimens with the use of end caps by an up to sixfold load increase (830 N, standard deviation (SD) 280 vs 150 N, SD 120, respectively; p = 0.007).

These results indicate that the nail and end cap insertion angle can be varied within 20° without altering construct stability and that the risk of elastic stable intramedullary nailing push–out can be effectively reduced by the use of end caps.

Cite this article: Bone Joint J 2015;97-B:558–63.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1073 - 1079
1 Aug 2017
Pauzenberger L Domej MA Heuberer PR Hexel M Grieb A Laky B Blasl J Anderl W

Aims

The purpose of the present study was to evaluate the impact of intravenous tranexamic acid on the reduction of blood loss, transfusion rate, and early post-operative clinical outcome in total shoulder arthroplasty.

Patients and Methods

A randomised, placebo-controlled trial which included 54 patients undergoing unilateral primary stemless anatomical or stemmed reverse total shoulder arthroplasty was undertaken. Patients received either 100 ml saline (placebo, n = 27), or 100 ml saline together with 1000 mg of tranexamic acid (TXA, n = 27) intravenously prior to skin incision and during wound closure. Peri-operative blood loss via an intra-articular drain was recorded and total blood loss was calculated. The post-operative transfusion rate was documented. Assessment of early clinical parameters included the visual analogue scale for pain (VAS), documentation of haematoma formation and adverse events.


Bone & Joint 360
Vol. 6, Issue 3 | Pages 16 - 19
1 Jun 2017


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives

We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change.

Methods

We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates.


Bone & Joint Research
Vol. 4, Issue 2 | Pages 23 - 28
1 Feb 2015
Auston DA Werner FW Simpson RB

Objectives

This study tests the biomechanical properties of adjacent locked plate constructs in a femur model using Sawbones. Previous studies have described biomechanical behaviour related to inter-device distances. We hypothesise that a smaller lateral inter-plate distance will result in a biomechanically stronger construct, and that addition of an anterior plate will increase the overall strength of the construct.

Methods

Sawbones were plated laterally with two large-fragment locking compression plates with inter-plate distances of 10 mm or 1 mm. Small-fragment locking compression plates of 7-hole, 9-hole, and 11-hole sizes were placed anteriorly to span the inter-plate distance. Four-point bend loading was applied, and the moment required to displace the constructs by 10 mm was recorded.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives

This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA).

Methods

Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 264 - 269
1 Dec 2013
Antoniades G Smith EJ Deakin AH Wearing SC Sarungi M

Objective

This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability.

Methods

Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests.


Objectives

The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage.

Methods

Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.


Bone & Joint 360
Vol. 5, Issue 6 | Pages 18 - 21
1 Dec 2016


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.

Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1248 - 1252
1 Sep 2016
White TO Bugler KE Appleton P Will† E McQueen MM Court-Brown CM

Aims

The fundamental concept of open reduction and internal fixation (ORIF) of ankle fractures has not changed appreciably since the 1960s and, whilst widely used, is associated with complications including wound dehiscence and infection, prominent hardware and failure. Closed reduction and intramedullary fixation (CRIF) using a fibular nail, wires or screws is biomechanically stronger, requires minimal incisions, and has low-profile hardware. We hypothesised that fibular nailing in the elderly would have similar functional outcomes to standard fixation, with a reduced rate of wound and hardware problems.

Patients and Methods

A total of 100 patients (25 men, 75 women) over the age of 65 years with unstable ankle fractures were randomised to undergo standard ORIF or fibular nailing (11 men and 39 women in the ORIF group, 14 men and 36 women in the fibular nail group). The mean age was 74 years (65 to 93) and all patients had at least one medical comorbidity. Complications, patient related outcome measures and cost-effectiveness were assessed over 12 months.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1370 - 1376
1 Oct 2015
Jordan RW Saithna A

This article is a systematic review of the published literature about the biomechanics, functional outcome and complications of intramedullary nailing of fractures of the distal radius.

We searched the Medline and EMBASE databases and included all studies which reported the outcome of intramedullary (IM) nailing of fractures of the distal radius. Data about functional outcome, range of movement (ROM), strength and complications, were extracted. The studies included were appraised independently by both authors using a validated quality assessment scale for non-controlled studies and the CONSORT statement for randomised controlled trials (RCTs).

The search strategy revealed 785 studies, of which 16 were included for full paper review. These included three biomechanical studies, eight case series and five randomised controlled trials (RCTs).

The biomechanical studies concluded that IM nails were at least as strong as locking plates. The clinical studies reported that IM nailing gave a comparable ROM, functional outcome and grip strength to other fixation techniques.

However, the mean complication rate of intramedullary nailing was 17.6% (0% to 50%). This is higher than the rates reported in contemporary studies for volar plating. It raises concerns about the role of intramedullary nailing, particularly when comparative studies have failed to show that it has any major advantage over other techniques. Further adequately powered RCTs comparing the technique to both volar plating and percutaneous wire fixation are needed.

Cite this article: Bone Joint J 2015;97-B:1370–6.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1063 - 1069
1 Aug 2015
Pilge H Holzapfel BM Rechl H Prodinger PM Lampe R Saur U Eisenhart-Rothe R Gollwitzer H

The aim of this study was to analyse the gait pattern, muscle force and functional outcome of patients who had undergone replacement of the proximal tibia for tumour and alloplastic reconstruction of the extensor mechanism using the patellar-loop technique.

Between February 1998 and December 2009, we carried out wide local excision of a primary sarcoma of the proximal tibia, proximal tibial replacement and reconstruction of the extensor mechanism using the patellar-loop technique in 18 patients. Of these, nine were available for evaluation after a mean of 11.6 years (0.5 to 21.6). The strength of the knee extensors was measured using an Isobex machine and gait analysis was undertaken in our gait assessment laboratory. Functional outcome was assessed using the American Knee Society (AKS) and Musculoskeletal Tumor Society (MSTS) scores.

The gait pattern of the patients differed in ground contact time, flexion heel strike, maximal flexion loading response and total sagittal plane excursion. The mean maximum active flexion was 91° (30° to 110°). The overall mean extensor lag was 1° (0° to 5°). The mean extensor muscle strength was 25.8% (8.3% to 90.3%) of that in the non-operated leg (p < 0.001). The mean functional scores were 68.7% (43.4% to 83.3%) (MSTS) and 71.1 (30 to 90) (AKS functional score).

In summary, the results show that reconstruction of the extensor mechanism using this technique gives good biomechanical and functional results. The patients’ gait pattern is close to normal, except for a somewhat stiff knee gait pattern. The strength of the extensor mechanism is reduced, but sufficient for walking.

Cite this article: Bone Joint J 2015;97-B:1063–9.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 70 - 72
1 Nov 2014
Callaghan JJ Liu SS Phruetthiphat O

A common situation presenting to the orthopaedic surgeon today is a worn acetabular liner with substantial acetabular and pelvic osteolysis. The surgeon has many options for dealing with osteolytic defects. These include allograft, calcium based substitutes, demineralised bone matrix, or combinations of these options with or without addition of platelet rich plasma. To date there are no clinical studies to determine the efficacy of using bone-stimulating materials in osteolytic defects at the time of revision surgery and there are surprisingly few studies demonstrating the clinical efficacy of these treatment options. Even when radiographs appear to demonstrate incorporation of graft material CT studies have shown that incorporation is incomplete. The surgeon, in choosing a graft material for a surgical procedure must take into account the efficacy, safety, cost and convenience of that material.

Cite this article: Bone Joint J 2014;96-B (11 Suppl A):70–2.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives

We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling.

Materials and Methods

Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1289 - 1296
1 Sep 2016
McNally MA Ferguson JY Lau ACK Diefenbeck M Scarborough M Ramsden AJ Atkins BL

Aims

Chronic osteomyelitis may recur if dead space management, after excision of infected bone, is inadequate. This study describes the results of a strategy for the management of deep bone infection and evaluates a new antibiotic-loaded biocomposite in the eradication of infection from bone defects.

Patients and Methods

We report a prospective study of 100 patients with chronic osteomyelitis, in 105 bones. Osteomyelitis followed injury or surgery in 81 patients. Nine had concomitant septic arthritis. 80 patients had comorbidities (Cierny-Mader (C-M) Class B hosts). Ten had infected nonunions.

All patients were treated by a multidisciplinary team with a single-stage protocol including debridement, multiple sampling, culture-specific systemic antibiotics, stabilisation, dead space filling with the biocomposite and primary skin closure.