header advert
Results 181 - 200 of 353
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 3 | Pages 380 - 384
1 May 1992
Lee J Salvati E Betts F DiCarlo E Doty S Bullough P

Reports of differing failure rates of total hip prostheses made of various metals prompted us to measure the size of metallic and polyethylene particulate debris around failed cemented arthroplasties. We used an isolation method, in which metallic debris was extracted from the tissues, and a non-isolation method of routine preparation for light and electron microscopy. Specimens were taken from 30 cases in which the femoral component was of titanium alloy (10), cobalt-chrome alloy (10), or stainless steel (10). The mean size of metallic particles with the isolation method was 0.8 to 1.0 microns by 1.5 to 1.8 microns. The non-isolation method gave a significantly smaller mean size of 0.3 to 0.4 microns by 0.6 to 0.7 microns. For each technique the particle sizes of the three metals were similar. The mean size of polyethylene particles was 2 to 4 microns by 8 to 13 microns. They were larger in tissue retrieved from failed titanium-alloy implants than from cobalt-chrome and stainless-steel implants. Our results suggest that factors other than the size of the metal particles, such as the constituents of the alloy, and the amount and speed of generation of debris, may be more important in the failure of hip replacements


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 2 | Pages 189 - 194
1 Mar 1983
Kent G Dodds R Klenerman L Watts R Bitensky L Chayen J

The aim of this study was to try to elucidate the increased susceptibility of the neck of femur to fracture. Quantitative polarised light microscopy has been applied to fresh, undecalcified sections of samples of bone taken from the site of fracture, in specimens taken at operation from patients with fractures of the femoral neck or osteoarthritic femoral heads or from the equivalent site from otherwise normal subjects at necropsy. In all 21 specimens of fractured necks of femur, but in none of the other specimens, relatively large crystals (up to 2.5 X 0.5 micrometres) were found close to the site of fracture; the properties of these crystals were compatible with their being apatite. Measurement of the natural birefringence of the collagen showed no difference in the orientation of the collagen in all three types of specimen. However, the orientation of acidic glycosaminoglycans, measured by the birefringence of alcian blue bound to these moieties, was 45 per cent lower in the specimens from fractured necks of femur than in the other specimens, even though the total content of acidic glycosaminoglycans was unchanged. Although the decreased orientation was most marked close to the site of fracture, it was still apparent 15 millimetres from that site. These changes were unlikely to be simply the sequelae of fracture since they were not found in traumatic fractures of other bones. Thus it is conceivable that changes in the orientation of the ground substance allow formation of relatively large crystals of apatite and that such crystals, in the microcrystalline mass of apatite, are the cause of the increased fragility of such bones


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 3 | Pages 511 - 528
1 Aug 1969
Bonucci E Denys-Matrajt H Tun-Chot S Hioco DJ

1. Four cases of osteomalacia secondary to vitamin D deficiency have been investigated histologically and with the electron microscope. 2. Three main types of cells were found along the osteoid tissue. Cells of Group 1 are like normal osteoblasts, except that their cytoplasm has an ordered granular endoplasmic reticulum, without enlarged cysternae. Moreover, it contains isolated rosettes of glycogen. Cells of Group 2 are like young progenitor cells. There are almost no rough cysternae in the cytoplasm. This contains clusters of glycogen, isolated ribosomes and many mitochondria. Cells of Group 3 are structurally like "resting" flat osteoblasts in normal bone. 3. The paper discusses how the presence of the three groups may be related to vitamin D deficiency or secondary hyperparathyroidism. 4. Malacic osteoid tissue consists of apparently normal collagen fibrils. Both optical and electron microscopy show that this tissue can calcify. But calcification stops at an early stage, or proceeds much more slowly than normal. So large areas ofosteoid tissue are left uncalcified. 5. Calcium salts are laid down either as needle-shaped crystals exactly like those in normal bone, or else abnormally. Where abnormal they either appear in a finely granular, almost amorphous form, or else acquire a characteristic star-like crystalline structure. 6. Where calcification takes place bundles of laterally aggregated collagen fibrils are found


The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 1 | Pages 146 - 153
1 Feb 1967
Lee WR

1 . Normal and diseased bone was obtained by biopsy from five patients suffering from Paget's disease. The tissue was studied by histology, microradiography and quantitative fluorescence microscopy using tetracycline markers. Study of the morphological changes showed that two of the biopsies could be regarded as normal, while one was osteoporotic; two biopsy specimens were in the porotic phase of Paget's disease and the remaining five were in the sclerotic phase. 2. The tetracycline markers were used to measure the linear rate at which bone was deposited on individual surfaces (appositional growth rate) in µ per day and the percentage volume of new bone added to the total volume of bone per day (bone formation rate). The values obtained for appositional growth rate in all the biopsies were of the order of 1 µ per day, but slightly higher values were obtained in the diseased tissue of each individual. The bone formation rate in normal bone from the proximal femur was about 0·04 per cent per day, about 0·13 per cent per day in the porotic phase, and about 0·4 per cent per day in the sclerotic phase of Paget's disease. 3. Although these values must be accepted with some reservation, there seems to be no doubt that there is an upper limit of about 1 µ per day to the rate of deposition of bone on an individual bone surface; this suggests that in Paget's disease the osteoblast behaves as a normal cell


Objectives

Activation of the leptin pathway is closely correlated with human knee cartilage degeneration. However, the role of the long form of the leptin receptor (Ob-Rb) in cartilage degeneration needs further study. The aim of this study was to determine the effect of increasing the expression of Ob-Rb on chondrocytes using a lentiviral vector containing Ob-Rb.

Methods

The medial and lateral cartilage samples of the tibial plateau from 12 osteoarthritis (OA) patients were collected. Ob-Rb messenger RNA (mRNA) was detected in these samples. The Ob-Rb-overexpressing chondrocytes and controls were treated with different doses of leptin for two days. The activation of the p53/p21 pathway and the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells were evaluated. The mammalian target of rapamycin (mTOR) signalling pathway and autophagy were detected after the chondrocytes were treated with a high dose of leptin.


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 4 | Pages 568 - 574
1 Jul 1994
Huk O Bansal M Betts F Rimnac C Lieberman Huo M Salvati E

We report a prospective study of the liner-metal interfaces of modular uncemented acetabular components as sources of debris. We collected the pseudomembrane from the screw-cup junction and the empty screw holes of the metal backing of 19 acetabula after an average implantation of 22 months. Associated osteolytic lesions were separately collected in two cases. The back surfaces of the liners and the screws were examined for damage, and some liners were scanned by electron microscopy. The tissues were studied histologically and by atomic absorption spectrophotometry to measure titanium content. The pseudomembrane from the screw-cup junction contained polyethylene debris in seven specimens and metal debris in ten. The material from empty screw holes was necrotic tissue or dense fibroconnective tissue with a proliferative histiocytic infiltrate and foreign-body giant-cell reaction. It contained polyethylene debris in 14 cases and metal in five. The two acetabular osteolytic lesions also showed a foreign-body giant-cell reaction to particulate debris. The average titanium levels in pseudomembranes from the screw-cup junction and the empty screw holes were 959 micrograms/g (48 to 11,900) and 74 micrograms/g (0.72 to 331) respectively. The tissue from the two lytic lesions showed average titanium levels of 139 and 147 micrograms/g respectively. The back surfaces of the PE liners showed surface deformation, burnishing, and embedded metal debris. All 30 retrieved screws demonstrated fretting at the base of the head and on the proximal shaft. Non-articular modular junctions create new interfaces for the generation of particulate debris, which may cause granulomatous reaction


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 4 | Pages 597 - 600
1 Jul 1990
Santavirta S Konttinen Y Saito T Gronblad M Partio E Kemppinen P Rokkanen P

Cytological analysis of material aspirated from the effusion which occasionally develops around a polyglycolic acid (PGA) osteosynthesis implant showed a predominance of inflammatory monocytes and in particular lymphocytes. In order to discover whether PGA implants are immunologically inert, density gradient-isolated peripheral blood mononuclear cells were cultured in 0.2 ml of 10% delta FCS-RPMI 1640 culture medium supplemented with 10 mg PGA. Phytohaemagglutinin (PHA) lectin, a purified protein derivate of tuberculin (PPD) antigen and culture medium alone were used as positive and negative controls. We studied lymphocyte activation kinetics on days 0, 1, 3 and 5. Major histocompatibility complex locus II antigen (MHC locus II antigen) and interleukin-2 receptor (IL-2R) expression were analysed using the avidin-biotin-peroxidase complex (ABC) method and lymphocyte DNA synthesis by using 3H-thymidine incorporation and beta-scintillation counting. Especially on culture days 0 and 1, lymphocytes and monocytes were seen by light microscopy to be attached to PGA particles. However, our results show no PGA-induced lymphocyte DNA synthesis, but PGA-induced MHC locus II antigen and IL-2R activation marker expression was seen, greater than in negative controls, but less than that seen in PPD antigen driven lymphocyte response. This suggests that PGA is an immunologically inert implant material, but it does seem to induce inflammatory mononuclear cell migration and adhesion, leading to a slight non-specific lymphocyte activation. This activation is lower than that seen in mitogen and antigen-driven lymphocyte responses


Bone & Joint 360
Vol. 7, Issue 6 | Pages 36 - 39
1 Dec 2018


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 126 - 132
1 Jan 2003
Mittlmeier T Vollmar B Menger MD Schewior L Raschke M Schaser K

A major pathway of closed soft-tissue injury is failure of microvascular perfusion combined with a persistently enhanced inflammatory response. We therefore tested the hypothesis that hypertonic hydroxyethyl starch (HS/HES) effectively restores microcirculation and reduces leukocyte adherence after closed soft-tissue injury. We induced closed soft-tissue injury in the hindlimbs of 14 male isoflurane-anaesthetised rats. Seven traumatised animals received 7.5% sodium chloride-6% HS/HES and seven isovolaemic 0.9% saline (NS). Six non-injured animals did not receive any additional fluid and acted as a control group. The microcirculation of the extensor digitorum longus muscle (EDL) was quantitatively analysed two hours after trauma using intravital microscopy and laser Doppler flowmetry, i.e. erythrocyte flux. Oedema was assessed by the wet-to-dry-weight ratio of the EDL. In NS-treated animals closed soft-tissue injury resulted in massive reduction of functional capillary density (FCD) and a marked increase in microvascular permeability and leukocyte-endothelial cell interaction as compared with the control group. By contrast, HS/HES was effective in restoring the FCD to 94% of values found in the control group. In addition, leukocyte rolling decreased almost to control levels and leukocyte adherence was found to be reduced by ~50%. Erythrocyte flux in NS-treated animals decreased to 90 ± 8% (mean . sem. ), whereas values in the HS/HES group significantly increased to 137 ± 3% compared with the baseline flux. Oedema in the HS/HES group (1.06 ± 0.02) was significantly decreased compared with the NS-group (1.12 ± 0.01). HS/HES effectively restores nutritive perfusion, decreases leukocyte adherence, improves endothelial integrity and attenuates oedema, thereby restricting tissue damage evolving secondary to closed soft-tissue injury. It appears to be an effective intervention, supporting nutritional blood flow by reducing trauma-induced microvascular dysfunction


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims

The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model.

Materials and Methods

A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).


Objectives

Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo.

Methods

ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 918 - 923
1 Sep 1998
Bruns J Kahrs J Kampen J Behrens P Plitz W

Our aim was to examine the potential of autologous perichondral tissue to form a meniscal replacement. In 18 mature sheep we performed a complete medial meniscectomy. The animals were then divided into two groups: 12 had a meniscal replacement using strips of autologous perichondral tissue explanted from the lower rib (group G) and six (group C) served as a control group without a meniscal replacement. In all animals restriction from weight-bearing was achieved by means of transection and partial resection of tendo Achillis. Six animals (four from group G and two from group C) were each killed at 3, 6 and 12 months. The grafts and the underlying articular cartilage were removed and studied by gross macroscopic examination, light microscopy, SEM, polarised light examination, and by biomechanical tests. In all the transplanted animals a new perichondral meniscus developed. After three months the transplants resembled normal menisci in size and thickness, while in the control animals only small rims of spontaneously grown tissue were seen. Microscopically, the perichondral menisci showed a normal orientation of collagen fibres and normal cellular characteristics, but in the central region, areas of calcification disturbed the regular tissue differentiation. Healing tissue in control animals lacked the normal fibre orientation and cellularity. SEM of perichondral menisci showed surface characteristics similar to those of normal sheep menisci without fissures and lacerations; the control specimens had these defects. The femoral and tibial cartilage in contact with the new menisci had normal surface characteristics apart from one animal with slight surface irregularities. Control animals showed superficial lesions after three months which increased at six to 12 months postoperatively. Microangiography of the newly grown tissue demonstrated a less intense vascularisation after three months when compared with normal menisci. The failure stress and tensile modulus of perichondral menisci were significantly lower than those of normal contralateral menisci, and spontaneously regenerated tissue in meniscectomised animals had even lower values. There were no significant differences in values between newly grown perichondral menisci and spontaneously grown tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 2 | Pages 386 - 401
1 May 1963
Burwell RG

1. Experiments to examine the antigenicity of homologous bone tissues in rats are reported. The tissues studied included fresh marrow-free cortical bone blocks and chips, fresh, boiled, frozen and freeze-dried marrow-containing iliac bone, fresh iliac bone devoid of marrow, and fresh red marrow. 2. The various tissues were transplanted from hooded to Wistar rats. Three weeks later a skin graft from each donor was transplanted to its respective host to detect the presence of transplantation immunity, which was indicated by the early rejection of the skin graft. 3. Homografts of fresh cortical bone evoked transplantation immunity indicating that it contained transplantation antigens which were also in the skin. 4. Homografts of fresh marrow-containing iliac bone also evoked transplantation immunity, which was shown to be caused by the red marrow. 5. Fresh iliac homografts devoid of marrow did not elicit transplantation immunity. This suggests that iliac bone tissue may not contain transplantation antigens or that the small amount of iliac bone inserted was insufficient. 6. Microscopy of the grafts, removed after three weeks, showed that the inflammatory infiltrations around the bone homografts and autografts were not very different, but that the amount of new bone formed was different. The autografts produced a lot of new bone, the homografts only a little. 7. It is suggested that the immune response evoked in the host by the foreign graft impairs the formation of new bone by fresh homografts of cortical blocks, cortical chips and marrow-containing iliac bone. 8. The impairment of new bone formation by homografts of marrow-free iliac bone is discussed. Such bone grafts fail to evoke detectable transplantation immunity. Why these grafts do not form more new homologous bone than the other homografts studied, is not clear. 9. Homografts of boiled and frozen iliac bone do not evoke any detectable change in the sensitivity of the host to donor tissue. 10. Homografts of freeze-dried marrow-containing iliac bone elicit a slight but significant prolongation of the survival of skin homografts. The implication, in terms of modern immunological theory, is that in such grafts certain tissue antigens still persist


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 732 - 738
1 Jul 1999
Meek RMD McLellan S Crossan JF

Dupuytren’s disease is a chronic inflammatory process which produces contractures of the fingers. The nodules present in Dupuytren’s tissue contain inflammatory cells, mainly lymphocytes and macrophages. These express a common integrin known as VLA4. The corresponding binding ligands to VLA4 are vascular cell adhesion molecule-1 (VCAM-1) present on the endothelial cells and the CS1 sequence of the fibronectin present in the extracellular matrix. Transforming growth factor-beta (TGF-ß) is a peptide hormone which has a crucial role in the process of fibrosis. We studied tissue from 20 patients with Dupuytren’s disease, four samples of normal palmar fascia from patients undergoing carpal tunnel decompression and tissue from ten patients who had received perinodular injections of depomedrone into the palm five days before operation. The distribution of VLA4, VCAM-1, CS1 fibronectin and TGF-ß was shown by immunohistochemistry using an alkaline phosphorylase method for light microscopy. In untreated Dupuytren’s tissue CS1 fibronectin stained positively around the endothelial cells of blood vessels and also around the surrounding myofibroblasts, principally at the periphery of many of the active areas of the Dupuytren’s nodule. VCAM-1 stained very positively for the endothelial cells of blood vessels surrounding and penetrating the areas of high nodular activity. VCAM-1 was more rarely expressed outside the blood vessels. VLA4 was expressed by inflammatory cells principally in and around the blood vessels expressing VCAM-1 and CS1 but also on some cells spreading into the nodule. TGF-ß stained positively around the inflammatory cells principally at the perivascular periphery of nodules. These cells often showed VLA4 expression and co-localised with areas of strong production of CS1 fibronectin. Normal palmar fascia contained only scanty amounts of CS1 fibronectin, almost no VCAM-1 and only an occasional cell staining positively for VLA4 or TGF-ß. In the steroid-treated group, VCAM-1 expression was downregulated in the endothelium of perinodular blood vessels and only occasional inflammatory cell expression remained. Expression of CS1 fibronectin was also much reduced but still occurred in the blood vessels and around the myofibroblast stroma. VLA4-expressing cells were also reduced in numbers. A similar but reduced distribution of production of TGF-ß was also noted. Our findings show that adherence of inflammatory cells to the endothelial wall and the extravasation into the periphery of the nodule may be affected by steroids, which reduce expression of VCAM-1 in vivo. This indicates that therapeutic intervention to prevent the recommencement of the chronic inflammatory process and subsequent fibrosis necessitating further surgery may be possible


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 882 - 890
1 Jul 2018
Bertrand J Delfosse D Mai V Awiszus F Harnisch K Lohmann CH

Aims

Early evidence has emerged suggesting that ceramic-on-ceramic articulations induce a different tissue reaction to ceramic-on-polyethylene and metal-on-metal bearings. Therefore, the aim of this study was to investigate the tissue reaction and cellular response to ceramic total hip arthroplasty (THA) materials in vitro, as well as the tissue reaction in capsular tissue after revision surgery of ceramic-on-ceramic THAs.

Patients and Methods

We investigated tissue collected at revision surgery from nine ceramic-on-ceramic articulations. we compared our findings with tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene THAs, and four primary osteoarthritis synovial membranes. The latter were analyzed to assess the amount of tissue fibrosis that might have been present at the time of implantation to enable evaluation, in relation to implantation time, of any subsequent response in the tissues.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 81 - 89
1 Feb 2019
Funk GA Menuey EM Cole KA Schuman TP Kilway KV McIff TE

Objectives

The objective of this study was to characterize the effect of rifampin incorporation into poly(methyl methacrylate) (PMMA) bone cement. While incompatibilities between the two materials have been previously noted, we sought to identify and quantify the cause of rifampin’s effects, including alterations in curing properties, mechanical strength, and residual monomer content.

Methods

Four cement groups were prepared using commercial PMMA bone cement: a control; one with 1 g of rifampin; and one each with equimolar amounts of ascorbic acid or hydroquinone relative to the amount of rifampin added. The handling properties, setting time, exothermic output, and monomer loss were measured throughout curing. The mechanical strength of each group was tested over 14 days. A radical scavenging assay was used to assess the scavenging abilities of rifampin and its individual moieties.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 524 - 538
1 Aug 2018
Zhao S Arnold M Ma S Abel RL Cobb JP Hansen U Boughton O

Objectives

The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone.

Methods

A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded.


Objectives

Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model.

Methods

The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity.