Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives. Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that . 99m. Tc-methylene diphosphonate (. 99m. Tc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA). Methods. Within the present study, we evaluated whether this promising new method, using . 99m. Tc-hydroxydiphosphonate (. 99m. Tc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with . 99m. Tc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured. Results. We saw a higher uptake (up to 15-fold) of the tracer in the OSM group A compared with the CNTRL group B. Statistical analysis of the results (Student`s t-test) revealed a significantly higher amount of emitted gamma counts in the OSM group (p = 0.048). Qualitative and semi-quantitative analysis by Alizarin Red staining confirmed the presence of extracellular HA deposition in the OSM group. Conclusion. Our data indicate that . 99m. Tc-HDP labelling is a promising tool to track and quantify non-destructive local HA deposition in 3D stem cell cultures. Cite this article: T. L. Grossner, U. Haberkorn, T. Gotterbarm. . 99m. Tc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Joint Res 2019;8:333–341. doi: 10.1302/2046-3758.87.BJR-2017-0248.R1


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733


Aims. To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Methods. Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 10. 6. ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed. Results. In the graft reseeded with ACL-derived cells, a large number of elongated cells that integrated into the matrix were evident at day 3 and day 7. However, in the graft reseeded with ADMSCs, only a small number of elongated cells were found integrated into the matrix. Immunofluorescence for Ki-67 and type I collagen confirmed the pronounced production of type I collagen by Ki-67-positive ACL-derived cells integrated into the ECM. A messenger RNA (mRNA) expression assay demonstrated significantly higher gene expression levels of types I (p = 0.013) and III (p = 0.050) collagen in the composites reseeded with ACL-derived cells than ADMSCs. Conclusion. ACL-derived cells, when reseeded to acellularized tendon graft, demonstrated earlier better survival and integration in the tendon ECM and resulted in higher gene expression levels of collagen, which may be essential to the normal ligamentization process compared to ADMSCs. Cite this article: Bone Joint Res 2022;11(11):777–786


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims

For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel.

Methods

The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims. The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. Methods. HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks. Results. In vitro, the HAAM scaffolds had a network structure and possessed abundant collagen. The HAAM scaffolds had good cytocompatibility, and hAMSCs grew well on the HAAM scaffolds. In vivo, the macroscopic scores of the HAAM + JCFs group were significantly higher than those of the other groups. In addition, histological assessments demonstrated that large amounts of hyaline-like cartilage formed in the osteochondral defects in the HAAM + JCFs group. Integration with surrounding normal cartilage and regeneration of subchondral bone in the HAAM + JCFs group were better than those in the other groups. Conclusion. HAAM scaffolds combined with JCFs promote the regenerative repair of osteochondral defects. Cite this article: Bone Joint Res 2022;11(6):349–361


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims. Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold. Methods. Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining. Results. In vitro testing showed that the secreted ECM oriented itself along the fibre in multi-layered scaffolds. Both types of CG scaffolds supported cell viability, growth, and matrix synthesis. In vitro chondrogenesis on scaffold showed an around 400-fold increase in collagen type 2 (COL2A1) expression in both CG scaffolds, but the total glycosaminoglycan (GAG)/DNA deposition was 1.39-fold higher in the multi-layered scaffold than the randomly aligned scaffold. In vivo cartilage formation occurred in both multi-layered and randomly aligned scaffolds treated with and without cells, and was shown to be of hyaline phenotype on immunostaining. The defects treated with multi-layered + cells, however, showed significantly thicker cartilage formation than the randomly aligned scaffold. Conclusion. We demonstrated that MSCs loaded CG scaffold with multi-layered zonal architecture promoted superior hyaline AC regeneration. Cite this article: Bone Joint Res 2020;9(9):601–612


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 357 - 361
1 May 2018
Shin T Lim D Kim YS Kim SC Jo WL Lim YW

Objectives

Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies.

Methods

The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression.