Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a
Aims. The National Joint Registry for England, Wales and Northern Ireland
(NJR) has extended its scope to report on hospital, surgeon and
implant performance. Data linkage of the NJR to the London Implant
Retrieval Centre (LIRC) has previously evaluated data quality for
hip primary procedures, but did not assess revision records. . Methods. We analysed metal-on-metal hip revision procedures performed
between 2003 and 2013. A total of 69 929 revision procedures from
the NJR and 929 revised pairs of components from the LIRC were included. Results. We were able to link 716 (77.1%) revision procedures on the NJR
to the LIRC. This meant that 213 (22.9%) revision procedures at
the LIRC could not be identified on the NJR. We found that 349 (37.6%)
explants at the LIRC completed the full linkage process to both
NJR primary and revision databases. Data completion was excellent
(>
99.9%) for revision procedures reported to the NJR. Discussion. This study has shown that only approximately one third of retrieved
components at the LIRC, contributed to survival curves on the NJR.
We recommend prospective registry-retrieval linkage as a tool to
feedback missing and erroneous data to the NJR and improve data
quality. Take home message: Prospective Registry –
Hip implant
This multicentre study analysed 12 alumina ceramic-on-ceramic
components retrieved from squeaking total hip replacements after
a mean of 23 months in situ (11 to 61). The rates
and patterns of wear seen in these squeaking hips were compared
with those seen in matched controls using
Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This
Arthroplasty registries are important for the
surveillance of joint replacements and the evaluation of outcome. Independent
validation of registry data ensures high quality. The ability for
orthopaedic implant
The early failure and revision of bimodular primary
total hip arthroplasty prostheses requires the identification of the
risk factors for material loss and wear at the taper junctions through
taper wear analysis. Deviations in taper geometries between revised
and pristine modular neck tapers were determined using high resolution
tactile measurements. A new algorithm was developed and validated
to allow the quantitative analysis of material loss, complementing
the standard visual inspection currently used. The algorithm was applied to a sample of 27
This study compared component wear rates and pre-revision blood metal ions levels in two groups of failed metal-on-metal hip arthroplasties: hip resurfacing and modular total hip replacement (THR). There was no significant difference in the median rate of linear wear between the groups for both acetabular (p = 0.4633) and femoral (p = 0.0872) components. There was also no significant difference in the median linear wear rates when failed hip resurfacing and modular THR hips of the same type (ASR and Birmingham hip resurfacing (BHR)) were compared. Unlike other studies of well-functioning hips, there was no significant difference in pre-revision blood metal ion levels between hip resurfacing and modular THR. Edge loading was common in both groups, but more common in the resurfacing group (67%) than in the modular group (57%). However, this was not significant (p = 0.3479). We attribute this difference to retention of the neck in resurfacing of the hip, leading to impingement-type edge loading. This was supported by visual evidence of impingement on the femur. These findings show that failed metal-on-metal hip resurfacing and modular THRs have similar component wear rates and are both associated with raised pre-revision blood levels of metal ions.
Two Durasul highly crosslinked polyethylene liners were exchanged during revision surgery four and five years after implantation, respectively. The retrieved liners were evaluated macroscopically and surface analysis was performed using optical and electron microscopy. A sample of each liner was used to determine the oxidation of the material by Fourier transform infrared spectroscopy. Samples of the capsule were examined histologically. The annual wear rate was found to be 0.010 and 0.015 mm/year, respectively. Surface analysis showed very little loss of material caused by wear. Histological evaluation revealed a continuous neosynovial lining with single multinucleated foreign-body giant cells. Our findings showed no unexpected patterns of wear on the articulating surfaces up to five years after implantation and no obvious failure of material.
We present the histological findings of an extensor mechanism allograft which was used in a total knee arthroplasty two years after implantation. Analysis of the graft was undertaken at four distinct anatomical levels and it was found to be incorporated into host tissue at each level. A wedge of fibrinoid necrosis, probably related to impingement of the graft on the tibial polyethylene insert, was seen. Impingement may play a role in the injury and necrosis of an allograft and may be one mode of failure in an extensor mechanism allograft.
We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated. The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation. Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses.
The causes of mechanical failure of five noncemented porous-coated components were studied. There were two cobalt-chromium alloy and three titanium alloy implants which fractured after 12 to 48 months. The implants included one acetabular component, and one femoral condylar, one patellar and two tibial components. Examination of the fractured surfaces revealed fatigue to be the mechanism of failure in all cases. The porous coating and the processes required for its fabrication had resulted in weakening and reduction of substrate thickness. Additional factors were stress concentration due to limited, localised bone ingrowth, and some features of the design of the implants.
We recovered 23 meniscal bearings from 18 failed bicompartmental Oxford knee prostheses. They had been implanted for one to nine years. The minimum thickness of the retrieved bearings was measured and compared with the thickness of 25 unused bearings. The mean penetration rate, calculated by two methods, was either 0.043 or 0.026 mm per annum. This compares with 0.19 mm per annum reported for the Charnley hip. The use of a fully congruous meniscal bearing prosthesis can reduce wear in knee arthroplasty to a very low rate.
Aims. The aim of this study was to present the first
Aims. Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However,
Aims. Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. Methods. An institutional review board-approved
Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in
Aims. The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). Methods. At our
Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical
Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used