Advertisement for orthosearch.org.uk
Results 1 - 20 of 101
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims

While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA.

Methods

A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 44 - 48
1 Jan 2006
Keene G Simpson D Kalairajah Y

Twenty patients underwent simultaneous bilateral medial unicompartmental knee arthroplasty. Pre-operative hip-knee-ankle alignment and valgus stress radiographs were used to plan the desired post-operative alignment of the limb in accordance with established principles for unicompartmental arthroplasty. In each patient the planned alignment was the same for both knees. Overall, the mean planned post-operative alignment was to 2.3° of varus (0° to 5°).

The side and starting order of surgery were randomised, using conventional instrumentation for one knee and computer-assisted surgery for the opposite side.

The mean variation between the pre-operative plan and the achieved correction in the navigated and the non-navigated limb was 0.9° (sd 1.1; 0° to 4°) and 2.8° (sd 1.4; 1° to 7°), respectively. Using the Wilcoxon signed rank test, we found the difference in variation statistically significant (p < 0.001).

Assessment of lower limb alignment in the non-navigated group revealed that 12 (60%) were within ± 2° of the pre-operative plan, compared to 17 (87%) of the navigated cases.

Computer-assisted surgery significantly improves the post-operative alignment of medial unicompartmental knee arthroplasty compared to conventional techniques in patients undergoing bilateral simultaneous arthroplasty. Improved alignment after arthroplasty is associated with better function and increased longevity.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims

The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA).

Methods

The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims. The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA). Methods. This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus). Results. ACL resection increased the mean extension gap significantly more than the flexion gap in the medial (mean 1.2 mm (SD 1.0) versus mean 0.2 mm (SD 0.7) respectively; p < 0.001) and lateral (mean 1.1 mm (SD 0.9) versus mean 0.2 mm (SD 0.6) respectively; p < 0.001) compartments. The mean gap differences following ACL resection did not create any significant mediolateral soft tissue laxity in extension (gap difference: mean 0.1 mm (SD 2.4); p = 0.89) or flexion (gap difference: mean 0.2 mm (SD 3.1); p = 0.40). ACL resection did not significantly affect maximum knee extension (change in maximum knee extension = mean 0.2° (SD 0.7°); p = 0.23) or fixed flexion deformity (mean 4.2° (SD 3.2°) pre-ACL release versus mean 3.9° (SD 3.7°) post-ACL release; p = 0.61). ACL resection did not significantly affect overall limb alignment (change in alignment = mean 0.2° valgus (SD 1.0° valgus; p = 0.11). Conclusion. ACL resection creates flexion-extension mismatch by increasing the extension gap more than the flexion gap. However, gap differences following ACL resection do not create any mediolateral soft tissue laxity in extension or flexion. ACL resection does not affect maximum knee extension or overall limb alignment. Cite this article: Bone Joint J 2020;102-B(4):442–448


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims. Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA). Methods. A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population. Results. There was a significant difference in means and distributions of the mHKA of the normal group compared to the arthritic group (mean -1.33° (SD 2.34°) vs mean -2.88° (SD 7.39°) respectively; p < 0.001). However, there was no significant difference between normal and arthritic groups using the aHKA (mean -0.87° (SD 2.54°) vs mean -0.77° (SD 2.84°) respectively; p = 0.550). There was no significant difference in the MPTA and LDFA between the normal and arthritic groups. Conclusion. The arithmetic HKA effectively estimated the constitutional alignment of the lower limb after the onset of arthritis in this cross-sectional population-based analysis. This finding is of significant importance to surgeons aiming to restore the constitutional alignment of the lower limb during TKA. Cite this article: Bone Jt Open 2021;2(5):351–358


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims. The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA). Patients and Methods. This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (. sd. 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (. sd. 3.4). Results. PCL resection increased the mean flexion gap significantly more than the extension gap in the medial (2.4 mm (. sd. 1.5) vs 1.3 mm (. sd. 1.0); p < 0.001) and lateral (3.3 mm (. sd. 1.6) vs 1.2 mm (. sd. 0.9); p < 0.01) compartments. The mean gap differences after PCL resection created significant mediolateral laxity in flexion (gap difference: 1.1 mm (. sd. 2.5); p < 0.001) but not in extension (gap difference: 0.1 mm (. sd. 2.1); p = 0.51). PCL resection significantly improved the mean FFD (6.3° (. sd. 4.4) preoperatively vs 3.1° (. sd. 1.5) postoperatively; p < 0.001). There was a strong positive correlation between the preoperative FFD and change in FFD following PCL resection (Pearson’s correlation coefficient = 0.81; p < 0.001). PCL resection did not significantly affect limb alignment (mean change in alignment: 0.2° valgus (. sd. 1.2); p = 0.60). Conclusion. PCL resection creates flexion-extension mismatch by increasing the flexion gap more than the extension gap. The increase in the lateral flexion gap is greater than the increase in the medial flexion gap, which creates mediolateral laxity in flexion. Improvements in FFD following PCL resection are dependent on the degree of deformity before PCL resection. Cite this article: Bone Joint J 2019;101-B:1230–1237


Bone & Joint Research
Vol. 4, Issue 8 | Pages 128 - 133
1 Aug 2015
Kuwashima U Okazaki K Tashiro Y Mizu-Uchi H Hamai S Okamoto S Murakami K Iwamoto Y

Objectives. Because there have been no standard methods to determine pre-operatively the thickness of resection of the proximal tibia in unicompartmental knee arthroplasty (UKA), information about the relationship between the change of limb alignment and the joint line elevation would be useful for pre-operative planning. The purpose of this study was to clarify the correlation between the change of limb alignment and the change of joint line height at the medial compartment after UKA. Methods. A consecutive series of 42 medial UKAs was reviewed retrospectively. These patients were assessed radiographically both pre- and post-operatively with standing anteroposterior radiographs. The thickness of bone resection at the proximal tibia and the distal femur was measured radiographically. The relationship between the change of femorotibial angle (δFTA) and the change of joint line height, was analysed. Results. The mean pre- and post-operative FTA was 180.5° (172.2° to 184.8°) and 175.0° (168.5° to 178.9°), respectively. The mean δFTA was 5.5° (2.3° to 10.1°). The joint line elevation of the tibia (JLET) was 4.4 mm (2.1 to 7.8). The δFTA was correlated with the JLET (correlation coefficient 0.494, p = 0.0009). Conclusions. This study indicated that there is a significant correlation between the change of limb alignment and joint line elevation. This observation suggests that it is possible to know the requirement of elevation of the joint line to obtain the desired correction of limb alignment, and to predict the requirement of bone resection of the proximal tibia pre-operatively. Cite this article: Bone Joint Res 2015;4:128–133


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°). Results. TKA with functional alignment achieved balanced medial and lateral compartment pressures at 10° (25.0 psi (SD 6.1) vs 23.1 psi (SD 6.7), respectively; p = 0.140), 45° (21.4 psi (SD 5.9) vs 20.6 psi (SD 5.9), respectively; p = 0.510), and 90° (21.2 psi (SD 7.1) vs 21.6 psi (SD 9.0), respectively; p = 0.800) of knee flexion. Mean ICPD was 6.1 psi (SD 4.5; 0 to 14) at 10°, 5.4 psi (SD 3.9; 0 to 12) at 45°, and 4.9 psi (SD 4.45; 0 to 15) at 90° of knee flexion. Mean postoperative limb alignment was 2.2° varus (SD 1.0°). Conclusion. TKA using the functional alignment achieves balanced mediolateral soft-tissue tension through the arc of knee flexion as assessed using intraoperative pressure-sensor technology. Further clinical trials are required to determine if TKA with functional alignment translates to improvements in patient satisfaction and outcomes compared to conventional alignment techniques. Cite this article: Bone Joint J 2021;103-B(3):507–514


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims. Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment. Methods. A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019. Results. Mean overall patient satisfaction for the entire cohort was 4.7 (SE 0.1) on a 5-point Likert scale, with 93% being either very satisfied or satisfied compared with a Likert of 4.3 and patient satisfaction of 81% in the mechanical alignment group (p < 0.001 and p < 0.006 respectively). At mean follow-up of 17 months (11 to 27), the mean overall Likert, Knee Injury and Osteoarthritis Outcome Score for Joint Replacement, Western Ontario and McMaster Universities Osteoarthritis Index, Forgotten Joint Score, and Knee Society Knee and Function Scores were significantly better in the kinematic group than in the neutral mechanical alignment group. The most common complication in both groups was contracture requiring manipulation under anaesthesia, involving seven knees (6.1%) in the kinematic group and nine knees (7.8%) in the mechanical alignment group. Conclusion. With the advent of advanced technology, and the ability to obtain accurate bone cuts, the target limb alignment, and soft-tissue balance within millimetres, using a restricted kinematic alignment concept demonstrated excellent patient satisfaction following primary TKA. Longer-term analysis is required as to the durability of this method. Cite this article: Bone Joint J 2021;103-B(6 Supple A):59–66


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. Methods. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups. Results. Patients undergoing conventional TKA and robotic TKA had comparable changes in the postoperative systemic inflammatory and localized thermal response at six hours, day 1, day 2, and day 28 after surgery. Robotic TKA had significantly reduced levels of interleukin-6 (p < 0.001), tumour necrosis factor-α (p = 0.021), ESR (p = 0.001), CRP (p = 0.004), lactate dehydrogenase (p = 0.007), and creatine kinase (p = 0.004) at day 7 after surgery compared with conventional TKA. Robotic TKA was associated with significantly improved preservation of the periarticular soft tissue envelope (p < 0.001), and reduced femoral (p = 0.012) and tibial (p = 0.023) bone trauma compared with conventional TKA. Robotic TKA significantly improved the accuracy of achieving the planned limb alignment (p < 0.001), femoral component positioning (p < 0.001), and tibial component positioning (p < 0.001) compared with conventional TKA. Conclusion. Robotic TKA was associated with a transient reduction in the early (day 7) postoperative inflammatory response but there was no difference in the immediate (< 48 hours) or late (day 28) postoperative systemic inflammatory response compared with conventional TKA. Robotic TKA was associated with decreased iatrogenic periarticular soft tissue injury, reduced femoral and tibial bone trauma, and improved accuracy of component positioning compared with conventional TKA. Cite this article: Bone Joint J 2021;103-B(1):113–122


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 49 - 58
1 Jun 2020
Mullaji A

Aims. The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Methods. A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other. Results. Of 50 knees (10%) with no soft tissue releases (other than cruciate ligaments), 90% were aligned, 81% were balanced, and 73% were aligned and balanced. In 288 knees (59%) only osteophyte excision was performed by subperiosteally releasing the deep medial collateral ligament. Of these, 98% were aligned, 80% were balanced, and 79% were aligned and balanced. In 154 knees (31%), additional procedures were performed (reduction osteotomy, posterior capsular release, and semimembranosus release). Of these, 89% were aligned, 68% were balanced, and 66% were aligned and balanced. The superficial medial collateral ligament was not released in any case. Conclusion. Two-thirds of all knees could be aligned and balanced with release of the cruciate ligaments alone and excision of osteophytes. Excision of osteophytes can be a useful step towards achieving deformity correction and gap balance without having to resort to soft tissue release in varus knees while maintaining classical coronal and sagittal alignment of components. Cite this article: Bone Joint J 2020;102-B(6 Supple A):49–58


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 354 - 359
1 Mar 2013
Chareancholvanich K Narkbunnam R Pornrattanamaneewong C

Patient-specific cutting guides (PSCGs) are designed to improve the accuracy of alignment of total knee replacement (TKR). We compared the accuracy of limb alignment and component positioning after TKR performed using PSCGs or conventional instrumentation. A total of 80 patients were randomised to undergo TKR with either of the different forms of instrumentation, and radiological outcomes and peri-operative factors such as operating time were assessed. No significant difference was observed between the groups in terms of tibiofemoral angle or femoral component alignment. Although the tibial component in the PSCGs group was measurably closer to neutral alignment than in the conventional group, the size of the difference was very small (89.8° (. sd. 1.2) vs 90.5° (. sd. 1.6); p = 0.030). This new technology slightly shortened the bone-cutting time by a mean of 3.6 minutes (p < 0.001) and the operating time by a mean 5.1 minutes (p = 0.019), without tangible differences in post-operative blood loss (p = 0.528) or need for blood transfusion (p = 0.789). This study demonstrated that both PSCGs and conventional instrumentation restore limb alignment and place the components with the similar accuracy. The minimal advantages of PSCGs in terms of consistency of alignment or operative time are unlikely to be clinically relevant. Cite this article: Bone Joint J 2013;95-B:354–9


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims. The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?. Patients and Methods. A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS). Results. Postoperative limb alignment did not affect outcomes. The standing hip-knee-ankle (HKA) angle was the sole positive predictor of the joint line convergence angle (JLCA) (p < 0.001). Increasing lateral flexion gap laxity was consistently associated with better outcomes. Lateral flexion gap laxity did not correlate with HKA angle, the JLCA, or lateral extension gap laxity. Minor releases were required in one third of cases. Conclusion. The standing HKA angle is the primary determinant of the JLCA in KTKA. A rectangular flexion gap is produced in only 11% of cases. Lateral flexion gap laxity is consistently associated with better outcomes and does not affect balance in extension. Minor releases are sometimes required as well, particularly in limbs with larger preoperative deformities. Cite this article: Bone Joint J 2019;101-B:331–339


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1033 - 1042
1 Aug 2018
Kayani B Konan S Pietrzak JRT Huq SS Tahmassebi J Haddad FS

Aims. The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA. Patients and Methods. This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (. sd. 6.8) vs 64.1 years (. sd. 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (. sd. 2.7) vs 28.1 kg.m2 (. sd. 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications. Results. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time (p < 0.001) and surgical team confidence levels (p < 0.001). Cumulative robotic experience did not affect accuracy of implant positioning (p = 0.52), posterior condylar offset ratio (p = 0.71), posterior tibial slope (p = 0.68), native joint line preservation (p = 0.55), and postoperative limb alignment (p = 0.65). Robotic-arm assisted UKA improved accuracy of femoral (p < 0.001) and tibial (p < 0.001) implant positioning with no additional risk of postoperative complications compared to conventional jig-based UKA. Conclusion. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time and surgical team confidence levels but no learning curve for accuracy of implant positioning. Cite this article: Bone Joint J 2018;100-B:1033–42