Advertisement for orthosearch.org.uk
Results 1 - 20 of 63
Results per page:

Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives. The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. Methods. Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation. Results. After IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK. Conclusion. IL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway. Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414–421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1


Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives. Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors. Methods. We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used. Results. As expected, dexamethasone had a strong inhibitory effect on the healing of unstable, but also stable, shaft fractures. In contrast, dexamethasone tended to increase the mechanical strength of metaphyseal bone regenerated under stable conditions. Conclusions. It seems that dexamethasone has different effects on metaphyseal and diaphyseal bone healing. This could be explained by the different role of inflammation at different sites of injury. Cite this article: Bone Joint Res 2015;4:170–175


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives. Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes. Methods. A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage. Results. The HFS diet, in the absence of trauma, resulted in increased joint damage in the shoulder and knee joints of rats. Hip joint damage, however, was not significantly affected by DIO, consistent with findings in human studies. The total Mankin score was increased in DIO animals compared with the chow group, and was associated with percentage of body fat. Positive significant predictive relationships for total Mankin score were found between body fat and two serum mediators (interleukin 1 alpha (IL-1α) and vascular endothelial growth factor (VEGF)). Conclusion. Systemic inflammatory alterations from DIO in this model system may result in a higher risk for development of knee, shoulder, and multi-joint damage with a HFS diet. Cite this article: K. H. Collins, D. A. Hart, R. A. Seerattan, R. A. Reimer, W. Herzog. High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model. Bone Joint Res 2018;7:274–281. DOI: 10.1302/2046-3758.74.BJR-2017-0201.R2


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results. CoNPs and Co. 2+. can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co. 2+. , decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion. These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co. 2+. in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J. Russell, C. L. Mendias. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017;6:57–65. DOI: 10.1302/2046-3758.61.BJR-2016-0232.R1


Bone & Joint Research
Vol. 5, Issue 12 | Pages 602 - 609
1 Dec 2016
Muto T Kokubu T Mifune Y Inui A Sakata R Harada Y Takase F Kurosaka M

Objectives. Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Methods. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed. Results. Exposure to TA significantly decreased cell viability and changed the cell morphology; these effects were prevented by the simultaneous administration of PRP. Compared with the control group, expression levels of inflammatory genes and reactive oxygen species production were reduced in the TA, PRP, and TA+PRP groups. PRP significantly decreased the expression levels of degenerative marker genes. Conclusions. The combination of TA plus PRP exerts anti-inflammatory and anti-degenerative effects on rotator cuff-derived cells stimulated by IL-1ß. This combination has the potential to relieve the symptoms of rotator cuff injury. Cite this article: T. Muto, T. Kokubu, Y. Mifune, A. Inui, R. Sakata, Y. Harada, F. Takase, M. Kurosaka. Effects of platelet-rich plasma and triamcinolone acetonide on interleukin-1ß-stimulated human rotator cuff-derived cells. Bone Joint Res 2016;5:602–609. DOI: 10.1302/2046-3758.512.2000582


Bone & Joint Research
Vol. 3, Issue 9 | Pages 262 - 272
1 Sep 2014
Gumucio J Flood M Harning J Phan A Roche S Lynch E Bedi A Mendias C

Objectives . Rotator cuff tears are among the most common and debilitating upper extremity injuries. Chronic cuff tears result in atrophy and an infiltration of fat into the muscle, a condition commonly referred to as ‘fatty degeneration’. While stem cell therapies hold promise for the treatment of cuff tears, a suitable immunodeficient animal model that could be used to study human or other xenograft-based therapies for the treatment of rotator cuff injuries had not previously been identified. Methods . A full-thickness, massive supraspinatus and infraspinatus tear was induced in adult T-cell deficient rats. We hypothesised that, compared with controls, 28 days after inducing a tear we would observe a decrease in muscle force production, an accumulation of type IIB fibres, and an upregulation in the expression of genes involved with muscle atrophy, fibrosis and inflammation. Results . Chronic cuff tears in nude rats resulted in a 30% to 40% decrease in muscle mass, a 23% reduction in production of muscle force, and an induction of genes that regulate atrophy, fibrosis, lipid accumulation, inflammation and macrophage recruitment. Marked large lipid droplet accumulation was also present. Conclusions . The extent of degenerative changes in nude rats was similar to what was observed in T-cell competent rats. T cells may not play an important role in regulating muscle degeneration following chronic muscle unloading. The general similarities between nude and T-cell competent rats suggest the nude rat is likely an appropriate preclinical model for the study of xenografts that have the potential to enhance the treatment of chronically torn rotator cuff muscles. Cite this article: Bone Joint Res 2014;3:262–72


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1202 - 1206
1 Nov 2003
Fiorito S Magrini L Goalard C

We investigated the circulating levels of the main cytokines involved in bone resorption (IL-1β, IL-6, TNF-α), prostaglandins (PGE. 2. ) and metalloproteases (MMP-1), as possible early markers of osteolysis, in the serum of eight patients with periprosthetic osteolysis and ten patients without osteolysis. All had received a cementless hip prosthesis (ABG-1). We also assessed the serum levels of IL-11 and TGF-β anti-inflammatory cytokines exerting protective effect on bone resorption. The mean serum levels of IL-1β, IL-6, TNF-α, TGF-β, MMP-1, and PGE. 2. in patients with periprosthetic osteolysis did not differ significantly from those of patients without osteolysis or from those of normal controls. IL-11 serum levels were not detectable at all in any of the patients, while they were detected within normal reference values in the control subjects (significant inverse correlation). We believe that circulating cytokines cannot be regarded as markers of osteolysis, a condition characterised by a local inflammation without systemic signs of inflammation. On the contrary, the undetectable levels of IL-11 in implanted patients could provide evidence for a lack of balance between pro- and anti-inflammatory cytokines in these patients


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 155 - 162
1 Jan 1999
Nakashima Y Sun D Trindade MCD Chun LE Song Y Goodman SB Schurman DJ Maloney WJ Smith RL

Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1α expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1α in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1α were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1α inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1261 - 1267
1 Sep 2007
Tohyama H Yasuda K Uchida H Nishihira J

In order to clarify the role of cytokines in the remodelling of the grafted tendon for ligament reconstruction we compared the responses to interleukin (IL)-1β, platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-β1 of extrinsic fibroblasts infiltrating the frozen-thawed patellar tendon in rats with that of the normal tendon fibroblasts, in regard to the gene expression of matrix metalloproteinase (MMP)-13, using Northern blot analysis. We also examined, immunohistologically, the local expression of IL-1β, PDGF-BB, and TGF-β1 in fibroblasts infiltrating the frozen-thawed patellar tendon. Northern blot analysis showed that fibroblasts derived from the patellar tendon six weeks after the freeze-thaw procedure in situ showed less response to IL-1β than normal tendon fibroblasts with respect to MMP-13 mRNA gene expression. The immunohistological findings revealed that IL-1β was over-expressed in extrinsic fibroblasts which infiltrated the patellar tendon two and six weeks after the freeze-thaw procedure in situ, but neither PDGF-BB nor TGF-β1 was over-expressed in these extrinsic fibroblasts. Our findings indicated that IL-1β had a close relationship to matrix remodelling of the grafted tendon for ligament reconstruction, in addition to the commencement of inflammation during the tissue-healing process


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives. The cytotoxicity induced by cobalt ions (Co. 2+. ) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co. 2+. and Co-NPs on liver cells, and explain further the potential mechanisms. Methods. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co. 2+. or Co-NPs treatment. Results. Results showed cytotoxic effects of Co. 2+. and Co-NPs were dependent upon time and dosage, and the cytotoxicity of Co-NPs was greater than that of Co. 2+. In addition, Co-NPs elicited a significant (p < 0.05) reduction in cell viability with a concomitant increase in lactic dehydrogenase release, reactive oxygen species generation, IL-8 mRNA expression, Bax/Bcl-2 mRNA expression and DNA damage after 24 hours of exposure. Conclusion. Co-NPs induced greater cytotoxicity and genotoxicity in BRL-3A cells than Co. 2+. Cell membrane damage, oxidative stress, immune inflammation and DNA damage may play an important role in the effects of Co-NPs on liver cells. Cite this article: Y. K. Liu, X. X. Deng, H.L. Yang. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res 2016;5:461–469. DOI: 10.1302/2046-3758.510.BJR-2016-0016.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 119 - 123
1 Jan 2009
Benson RT McDonnell SM Rees JL Athanasou NA Carr AJ

We assessed the predictive value of the macroscopic and detailed microscopic appearance of the coracoacromial ligament, subacromial bursa and rotator-cuff tendon in 20 patients undergoing subacromial decompression for impingement in the absence of full-thickness tears of the rotator cuff. Histologically, all specimens had features of degenerative change and oedema in the extracellular matrix. Inflammatory cells were seen, but there was no evidence of chronic inflammation. However, the outcome was not related to cell counts. At three months the mean Oxford shoulder score had improved from 29.2 (20 to 40) to 39.4 (28 to 48) (p < 0.0001) and at six months to 45.5 (36 to 48) (p < 0.0001). At six months, although all patients had improved, the seven patients with a hooked acromion had done so to a less extent than those with a flat or curved acromion judged by their mean Oxford shoulder scores of 43.5 and 46.5 respectively (p = 0.046). All five patients with partial-thickness tears were within this group and demonstrated less improvement than the patients with no tear (mean Oxford shoulder scores 43.2 and 46.4, respectively, p = 0.04). These findings imply that in the presence of a partial-thickness tear subacromial decompression may require additional specific treatment to the rotator cuff if the outcome is to be improved further


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 889 - 893
1 Jun 2010
Kocaoglu B Agir I Nalbantoglu U Karahan M Türkmen M

We investigated the effect of mitomycin-C on the reduction of the formation of peritendinous fibrous adhesions after tendon repair. In 20 Wistar albino rats the tendo Achillis was cut and repaired using a modified Kessler technique. The rats were divided into two equal groups. In group 1, an injection of mitomycin-C was placed between the tendon and skin of the right leg. In group 2, an identical volume of sterile normal saline was injected on the left side in a similar fashion. All the rats received mitomycin-C or saline for four weeks starting from the day of operation. The animals were killed after 30 days. The formation of peritendinous fibrous tissue, the inflammatory reaction and tendon healing were evaluated. The tensile strength of the repaired tendons was measured biomechanically. Microscopic evidence of the formation of adhesions and inflammation was less in group 1. There was no significant difference in the tensile load required to rupture the repaired tendons in the two groups. Mitomycin-C may therefore provide a simple and inexpensive means of preventing of post-operative adhesions


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1245 - 1251
1 Sep 2006
Pendegrass CJ Oddy MJ Sundar S Cannon SR Goodship AE Blunn GW

We examined the mechanical properties of Vicryl (polyglactin 910) mesh in vitro and assessed its use in vivo as a novel biomaterial to attach tendon to a hydroxyapatite-coated metal implant, the interface of which was augmented with autogenous bone and marrow graft. This was compared with tendon re-attachment using a compressive clamp device in an identical animal model. Two- and four-ply sleeves of Vicryl mesh tested to failure under tension reached 5.13% and 28.35% of the normal ovine patellar tendon, respectively. Four-ply sleeves supported gait in an ovine model with 67.05% weight-bearing through the operated limb at 12 weeks, without evidence of mechanical failure. Mesh fibres were visible at six weeks but had been completely resorbed by 12 weeks, with no evidence of chronic inflammation. The tendon-implant neoenthesis was predominantly an indirect type, with tendon attached to the bone-hydroxyapatite surface by perforating collagen fibres


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 906 - 911
1 Aug 2004
Kearns SR Daly AF Sheehan K Murray P Kelly C Bouchier-Hayes D

Compartment syndrome is a unique form of ischaemia of skeletal muscle which occurs despite patency of the large vessels. Decompression allows the influx of activated leucocytes which cause further injury. Vitamin C is a powerful antioxidant which concentrates preferentially in leucocytes and attenuates reperfusion-induced muscle injury. We have evaluated the use of pretreatment with oral vitamin C in the prevention of injury caused by compartment syndrome in a rat cremasteric muscle model. Acute and delayed effects of pretreatment with vitamin C were assessed at one and 24 hours after decompression of compartment syndrome. Muscle function was assessed electrophysiologically. Vascular, cellular and tissue inflammation was assessed by staining of intercellular adhesion molecule-1 (ICAM-1) and by determination of the activity of myeloperoxidase (MPO) in neutrophils and tissue oedema. Compartment syndrome impaired skeletal muscle function and increased the expression of ICAM-1, activity of MPO and muscle weight increased significantly. Pretreatment with vitamin C preserved muscle function and reduced the expression of ICAM-1, infiltration of the neutrophils and oedema


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 171 - 177
1 Jan 1999
Okamoto T Atsuta Y Shimazaki S

We studied the sensory afferent properties of normal, immobilised and inflamed rat knees by recording the activity of the medial articular nerve (MAN). When the knee was inflamed by kaolin-carrageenan or immobilised for six weeks, MAN activity significantly increased during rest and continuous passive motion (CPM). The maximal discharge rate tended to increase depending on the angular velocity of the CPM. When the knees were then rested for one hour before again starting CPM, activity was further increased at the initial CPM cycle, the ‘post-rest effect’. Analysis of the conduction velocity showed that 94% and 66% of spike units on the recorded discharge of the immobilised and inflamed knees, respectively, belonged to fine nerve fibres. Our findings show that the sensory receptors in the knee are sensitised in a similar manner by immobilisation and by inflammation, suggesting a relationship to pain. The post-rest effect may be related to a characteristic symptom of osteoarthritis called ‘starting pain’


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 336 - 341
1 Mar 1999
Sugihara S van Ginkel AD Jiya TU van Royen BJ van Diest PJ Wuisman PIJM

From November 1994 to March 1997, we harvested 137 grafts of the femoral head from 125 patients for donation during total hip arthroplasty according to the guidelines of the American Associations of Tissue Banks (AATB) and the European Association of Musculo-Skeletal transplantation (EAMST). In addition to the standards recommended by these authorities, we performed histopathological examination of a core biopsy of the retrieved bone allograft and of the synovium. Of the 137 allografts, 48 (35.0%) fulfilled all criteria and were free for donation; 31 (22.6%) were not regarded as suitable for transplantation because the serological retests at six months were not yet complete and 58 (42.3%) were discarded because of incomplete data. Of those discarded, five showed abnormal histopathological findings; three were highly suspicious of low-grade B-cell lymphoma, one of monoclonal plasmacytosis and the other of non-specific inflammation of bone marrow. However, according to the standards of the AATB or EAMST they all met the criteria and were eligible for transplantation. Our findings indicate that the incidence of abnormal histopathology in these retrieved allografts was 3.6%. Since it is essential to confirm the quality of donor bones in bone banking, we advise that histopathological screening of donor bone should be performed to exclude abnormal allografts


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant