Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 541 - 547
1 Apr 2014
Kose KC Inanmaz ME Isik C Basar H Caliskan I Bal E

The purpose of this study was to evaluate and compare the effect of short segment pedicle screw instrumentation and an intermediate screw (SSPI+IS) on the radiological outcome of type A thoracolumbar fractures, as judged by the load-sharing classification, percentage canal area reduction and remodelling. . We retrospectively evaluated 39 patients who had undergone hyperlordotic SSPI+IS for an AO-Magerl Type-A thoracolumbar fracture. Their mean age was 35.1 (16 to 60) and the mean follow-up was 22.9 months (12 to 36). There were 26 men and 13 women in the study group. In total, 18 patients had a load-sharing classification score of seven and 21 a score of six. All radiographs and CT scans were evaluated for sagittal index, anterior body height compression (%ABC), spinal canal area and encroachment. There were no significant differences between the low and high score groups with respect to age, duration of follow-up, pre-operative sagittal index or pre-operative anterior body height compression (p = 0.217, 0.104, 0.104, and 0.109 respectively). The mean pre-operative sagittal index was 19.6° (12° to 28°) which was corrected to -1.8° (-5° to 3°) post-operatively and 2.4° (0° to 8°) at final follow-up (p = 0.835 for sagittal deformity). No patient needed revision for loss of correction or failure of instrumentation. Hyperlordotic reduction and short segment pedicle screw instrumentation and an intermediate screw is a safe and effective method of treating burst fractures of the thoracolumbar spine. It gives excellent radiological results with a very low rate of failure regardless of whether the fractures have a high or low load-sharing classification score. Cite this article: Bone Joint J 2014;96-B:541–7


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 1 | Pages 107 - 112
1 Jan 1994
Kuner E Kuner A Schlickewei W Mullaji A

We assessed narrowing of the spinal canal in 39 burst fractures and fracture-dislocations of thoracolumbar vertebrae treated by the AO Internal Spinal Fixator, using CT preoperatively and at various stages postoperatively. Computer-aided planimetry was used to measure the narrowing, and its restoration shortly after instrumentation, or at 15 months. The mean initial reduction of canal area was to 63.7% +/- 18.8% of normal; this was restored to a mean of 95.4% +/- 21.2% of normal when measured either soon after surgery or at 15 months (p < 0.001 for both groups). There was more improvement in cases assessed later. For fractures from D12 to L3, the mean canal area was restored to 99.4% of normal; but at L4 or L5 the mean restitution was to only 60.9% (p < 0.05). We found no correlation between preoperative loss of area and amount of restoration, or severity of neurological deficit. Nor was there any correlation between the delay before surgery and the improvement achieved. The mechanism of fracture reduction appears to be a combination of distraction ligamentotaxis and forced hyperextension.


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 5 | Pages 704 - 708
1 Nov 1987
Riska E Myllynen P Bostman O

Of a total of 905 patients with fracture or fracture-dislocation of the thoracolumbar spine admitted from 1969 to 1982, a neurological deficit was present in 334 (37%). All unstable injuries were initially treated by reduction and posterior fusion. In 79 of these patients, an anterolateral decompression was undertaken later because of persistent neurological deficit and radiographic demonstration of encroachment on the spinal canal. One patient died of pulmonary embolism; 78 were reviewed after a mean period of four years. Of these 78 patients 18 made a complete neurological recovery while 53 appeared to have benefited from the procedure; 25 remained unchanged. The best results were obtained in burst fractures at thoracolumbar and lumbar levels when a solitary detached fragment of a vertebral body had been displaced into the spinal canal. These results indicate that anterolateral decompression of the spinal canal should be considered, after careful evaluation, for certain injuries of the spine in which there is severe neural involvement


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1097 - 1100
1 Aug 2012
Venkatesan M Fong A Sell PJ

The aim of this study was first, to determine whether CT scans undertaken to identify serious injury to the viscera were of use in detecting clinically unrecognised fractures of the thoracolumbar vertebrae, and second, to identify patients at risk of ‘missed injury’.

We retrospectively analysed CT scans of the chest and abdomen performed for blunt injury to the torso in 303 patients. These proved to be positive for thoracic and intra-abdominal injuries in only 2% and 1.3% of cases, respectively. However, 51 (16.8%) showed a fracture of the thoracolumbar vertebrae and these constituted our subset for study. There were eight women and 43 men with mean age of 45.2 years (15 to 94). There were 29 (57%) stable and 22 (43%) unstable fractures. Only 17 fractures (33.3%) had been anticipated after clinical examination. Of the 22 unstable fractures, 11 (50%) were anticipated. Thus, within the whole group of 303 patients, an unstable spinal injury was missed in 11 patients (3.6%); no harm resulted as they were all protected until the spine had been cleared. A subset analysis revealed that patients with a high Injury Severity Score, a low Glasgow Coma Scale and haemodynamic instability were most likely to have a significant fracture in the absence of positive clinical findings. This is the group at greatest risk.

Clinical examination alone cannot detect significant fractures of the thoracolumbar spine. It should be combined with CT imaging to reduce the risk of missed injury.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 5 | Pages 774 - 777
1 Sep 1995
Limb D Shaw D Dickson R

Many authors recommend surgery to remove retropulsed bone fragments from the canal in burst fractures to 'decompress' the spinal canal. We believe, however, that neurological damage occurs at the moment of injury when the anatomy is most distorted, and is not due to impingement in the resting positions observed afterwards. We studied 20 consecutive patients admitted to our spinal injuries unit over a two-year period with a T12 or L1 burst fracture. There was no correlation between bony or canal disruption and the degree of neurological compromise sustained but there was a significant correlation between the energy of the injury (as gauged by the Injury Severity Score) and the neurological status (p < 0.001). This suggests that neurological injury occurs at the time of trauma rather than being a result of pressure from fragments in the canal afterwards and questions the need to operate simply to remove these fragments.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 5 | Pages 683 - 685
1 Sep 1992
Fontijne W de Klerk L Braakman R Stijnen T Tanghe H Steenbeek R van Linge B

In 139 patients with burst fractures of the thoracic, thoracolumbar or lumbar spine, the least sagittal diameter of the spinal canal at the level of injury was measured by computerised tomography. By multiple logistic regression we investigated the joint correlation of the level of the burst fracture and the percentage of spinal canal stenosis with the probability of an associated neurological deficit. There was a very significant correlation between neurological deficit and the percentage of spinal canal stenosis; the higher the level of injury the greater was the probability. The severity of neurological deficit could not be predicted.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 620 - 620
1 May 2001
SLEDGE J ALLRED CD


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 151 - 151
1 Jan 2001
CROSSMAN PT SCOTT JM


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1205 - 1205
1 Nov 2000
JAFFRAY DC


Bone & Joint 360
Vol. 12, Issue 3 | Pages 30 - 32
1 Jun 2023

The June 2023 Spine Roundup360 looks at: Characteristics and comparative study of thoracolumbar spine injury and dislocation fracture due to tertiary trauma; Sublingual sufentanil for postoperative pain management after lumbar spinal fusion surgery; Minimally invasive bipolar technique for adult neuromuscular scoliosis; Predictive factors for degenerative lumbar spinal stenosis; Lumbosacral transitional vertebrae and lumbar fusion surgery at level L4/5; Does recall of preoperative scores contaminate trial outcomes? A randomized controlled trial; Vancomycin in fibrin glue for prevention of SSI; Perioperative nutritional supplementation decreases wound healing complications following elective lumbar spine surgery: a randomized controlled trial.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 29 - 32
1 Aug 2022


Bone & Joint 360
Vol. 11, Issue 2 | Pages 34 - 37
1 Apr 2022


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 833 - 839
1 Sep 1998
Oner FC van der Rijt RR Ramos LMP Dhert WJA Verbout AJ

We have studied the intervertebral discs adjacent to fractured vertebral bodies using MRI in 63 patients at a minimum of 18 months after injury. There were 75 thoracolumbar fractures of which 26 were treated conservatively and 37 by posterior reduction and fusion with an AO internal fixator. We identified six different types of disc using criteria based on the morphology and the intensity of the MRI signal. The inter- and intraobserver variability of this system was good. Most of the discs showed predominantly morphological changes with no variation in signal intensity. Some disc types were associated with progressive kyphosis in patients treated conservatively. In those managed by operation, recurrent kyphosis appeared to result from creeping of the disc in the central depression of the bony endplate rather than from disc degeneration. Changes in the disc space after posterior fixation should not be seen as a form of chronic instability but as a redistribution of the disc tissue in the changed morphology of the space after fractures of the endplate


Bone & Joint 360
Vol. 9, Issue 6 | Pages 34 - 36
1 Dec 2020


Bone & Joint 360
Vol. 1, Issue 5 | Pages 21 - 24
1 Oct 2012

The October 2012 Spine Roundup. 360. looks at: a Japanese questionnaire at work in Iran; curve progression in degenerative lumbar scoliosis; the cause of foot drop; the issue of avoiding the spinal cord at scoliosis surgery; ballistic injuries to the cervical spine; minimally invasive oblique lumbar interbody fusion; readmission rates after spinal surgery; clinical complications and the severely injured cervical spine; and stabilising the thoracolumbar burst fracture


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 506 - 512
1 Apr 2020
de Bodman C Ansorge A Tabard A Amirghasemi N Dayer R

Aims

The direct posterior approach with subperiosteal dissection of the paraspinal muscles from the vertebrae is considered to be the standard approach for the surgical treatment of adolescent idiopathic scoliosis (AIS). We investigated whether or not a minimally-invasive surgery (MIS) technique could offer improved results.

Methods

Consecutive AIS patients treated with an MIS technique at two tertiary centres from June 2013 to March 2016 were retrospectively included. Preoperative patient deformity characteristics, perioperative parameters, power of deformity correction, and complications were studied. A total of 93 patients were included. The outcome of the first 25 patients and the latter 68 were compared as part of our safety analysis to examine the effect of the learning curve.


Bone & Joint 360
Vol. 8, Issue 3 | Pages 29 - 31
1 Jun 2019


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 629 - 635
1 Jul 2000
Boerger TO Limb D Dickson RA

Surgical decompression of the spinal canal is presently accepted worldwide as the method of treatment for thoracolumbar burst fractures with neurological deficit in the belief that neurological recovery may be produced or enhanced. Our clinical and laboratory experience, however, indicates that the paralysis occurs at the moment of injury and is not related to the position of the fragments of the fracture on subsequent imaging. Since the preoperative geometry of the fracture may be of no relevance, our hypothesis, backed by more than two decades of operative experience, is that alteration of the canal by ‘surgical clearance’ does not affect the neurological outcome. We have reviewed the existing world literature in an attempt to find evidence-based justification for the variety of surgical procedures used in the management of these fractures. We retrieved 275 publications on the management of burst fractures of which 60 met minimal inclusion criteria and were analysed more closely. Only three papers were prospective studies; the remainder were retrospective descriptive analyses. None of the 60 articles included control groups. The design of nine studies was sufficiently similar to allow pooling of their results, which failed to establish a significant advantage of surgical over non-surgical treatment as regards neurological improvement. Significant complications were reported in 75% of papers, including neurological deterioration. Surgical treatment for burst fracture in the belief that neurological improvement can be achieved is not justified, although surgery may still occasionally be indicated for structural reasons. This information should not be withheld from the patients


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims

Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation.

Materials and Methods

A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1234 - 1239
1 Sep 2016
Yu HM Malhotra K Butler JS Patel A Sewell MD Li YZ Molloy S

Aims

Patients with multiple myeloma (MM) develop deposits in the spine which may lead to vertebral compression fractures (VCFs). Our aim was to establish which spinopelvic parameters are associated with the greatest disability in patients with spinal myeloma and VCFs.

Patients and Methods

We performed a retrospective cross-sectional review of 148 consecutive patients (87 male, 61 female) with spinal myeloma and analysed correlations between spinopelvic parameters and patient-reported outcome scores. The mean age of the patients was 65.5 years (37 to 91) and the mean number of vertebrae involved was 3.7 (1 to 15).