Objectives.
In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol.Aims
Methods
Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation.Aims
Methods
Non-traumatic osteonecrosis of the femoral head
is a potentially devastating condition, the prevalence of which
is increasing. Many joint-preserving forms of treatment, both medical
and surgical, have been developed in an attempt to slow or reverse
its progression, as it usually affects young patients. However, it is important to evaluate the best evidence that is
available for the many forms of treatment considering the variation
in the demographics of the patients, the methodology and the outcomes
in the studies that have been published, so that it can be used
effectively. The purpose of this review, therefore, was to provide an up-to-date,
evidence-based guide to the management, both non-operative and operative,
of non-traumatic osteonecrosis of the femoral head. Cite this article:
The October 2014 Wrist &
Hand Roundup360 looks at: pulsed electromagnetic field of no use in acute scaphoid fractures; proximal interphalangeal joint replacement: one at a time or both at once; trapeziometacarpal arthrodesis in the young patient; Tamoxifen and Dupytren’s disease; and endoscopic or open for de Quervain’s syndrome?
The outcome after total hip replacement has improved
with the development of surgical techniques, better pain management
and the introduction of enhanced recovery pathways. These pathways
require a multidisciplinary team to manage pre-operative education,
multimodal pain control and accelerated rehabilitation. The current economic
climate and restricted budgets favour brief hospitalisation while
minimising costs. This has put considerable pressure on hospitals
to combine excellent results, early functional recovery and shorter
admissions. In this review we present an evidence-based summary of some common
interventions and methods, including pre-operative patient education,
pre-emptive analgesia, local infiltration analgesia, pre-operative
nutrition, the use of pulsed electromagnetic fields, peri-operative
rehabilitation, wound dressings, different surgical techniques, minimally
invasive surgery and fast-track joint replacement units. Cite this article: