Triplane ankle fractures are complex injuries typically occurring in children aged between 12 and 15 years. Classic teaching that closure of the physis dictates the overall fracture pattern, based on studies in the 1960s, has not been challenged. The aim of this paper is to analyze whether these injuries correlate with the advancing closure of the physis with age. A fracture mapping study was performed in 83 paediatric patients with a triplane ankle fracture treated in three trauma centres between January 2010 and June 2020. Patients aged younger than 18 years who had CT scans available were included. An independent Paediatric Orthopaedic Trauma Surgeon assessed all CT scans and classified the injuries as n-part triplane fractures. Qualitative analysis of the fracture pattern was performed using the modified Cole fracture mapping technique. The maps were assessed for both patterns and correlation with the closing of the physis until consensus was reached by a panel of six surgeons.Aims
Methods
The purpose of this study was to investigate whether the femoral
head–neck contour, characterised by the alpha angle, varies with
the stage of physeal maturation using MRI evaluation of an asymptomatic
paediatric population. Paediatric volunteers with asymptomatic hips were recruited to
undergo MRI of both hips. Femoral head physes were graded from 1
(completely open) to 6 (completely fused). The femoral head–neck
contour was evaluated using the alpha angle, measured at the 3:00
(anterior) and 1:30 (anterosuperior) positions and correlated with
physeal grade, with gender sub-analysis performed.Objectives
Methods
Lateral clavicular physeal injuries in adolescents
are frequently misinterpreted as acromioclavicular dislocations. There
are currently no clear guidelines for the management of these relatively
rare injuries. Non-operative treatment can result in a cosmetic
deformity, warranting resection of the non-remodelled original lateral
clavicle. However, fixation with Kirschner (K)-wires may be associated
with infection and/or prominent metalwork. We report our experience
with a small series of such cases. Between October 2008 and October 2011 five patients with lateral
clavicular physeal fractures (types III, IV and V) presented to
our unit. There were four boys and one girl with a mean age of 12.8
years (9 to 14). Four fractures were significantly displaced and
treated operatively using a tension band suture technique. One grade
III fracture was treated conservatively. The mean follow-up was
26 months (6 to 42). All patients made an uncomplicated recovery. The mean time to
discharge was three months. The QuickDASH score at follow-up was
0 for each patient. No patient developed subsequent growth disturbances. We advocate the surgical treatment of significantly displaced
Grade IV and V fractures to avoid cosmetic deformity. A tension
band suture technique avoids the problems of retained metalwork
and the need for a secondary procedure. Excellent clinical and radiological
results were seen in all our patients. Cite this article:
The aim of this study was to evaluate the efficacy of the surgical dislocation approach and modified trapdoor procedure for the treatment of chondroblastoma of the femoral head. A total of 17 patients (ten boys, seven girls; mean age 16.4 years (11 to 26)) diagnosed with chondroblastoma of the femoral head who underwent surgical dislocation of the hip joint, modified trapdoor procedure, curettage, and bone grafting were enrolled in this study and were followed-up for a mean of 35.9 months (12 to 76). Healing and any local recurrence were assessed via clinical and radiological tests. Functional outcome was evaluated using the Musculoskeletal Tumour Society scoring system (MSTS). Patterns of bone destruction were evaluated using the Lodwick classification. Secondary osteoarthritis was classified via radiological analysis following the Kellgren–Lawrence grading system. Steinberg classification was used to evaluate osteonecrosis of the femoral head.Aims
Patients and Methods
Percutaneous physiodesis is an established technique for treating mild leg-length discrepancy and problems of expected extreme height. Angular deformities resulting from incomplete physeal arrest have been reported, and little is known about the time interval from percutaneous physiodesis to actual physeal arrest. This procedure was carried out in ten children, six with leg-length discrepancy and four with expected extreme height. Radiostereometric analysis was used to determine the three-dimensional dynamics of growth retardation. Errors of measurement of translation were less than 0.05 mm and of rotation less than 0.06°. Physeal arrest was obtained in all but one child within 12 weeks after physiodesis and no clinically-relevant angular deformities occurred. This is a suitable method for following up patients after percutaneous physiodesis. Incomplete physeal arrest can be detected at an early stage and the procedure repeated before corrective osteotomy is required.
We compared the accuracy of the growth remaining
method of assessing leg-length discrepancy (LLD) with the straight-line
graph method, the multiplier method and their variants. We retrospectively
reviewed the records of 44 patients treated by percutaneous epiphysiodesis
for LLD. All were followed up until maturity. We used the modified Green–Anderson
growth-remaining method (Method 1) to plan the timing of epiphysiodesis.
Then we presumed that the other four methods described below were
used pre-operatively for calculating the timing of epiphysiodesis. We
then assumed that these four methods were used pre-operatively.
Method 2 was the original Green–Anderson growth-remaining method;
Method 3, Paley’s multiplier method using bone age; Method 4, Paley’s
multiplier method using chronological age; and Method 5, Moseley’s
straight-line graph method. We compared ‘Expected LLD at maturity
with surgery’ with ‘Final LLD at maturity with surgery’ for each
method. Statistical analysis revealed that ‘Expected LLD at maturity
with surgery’ was significantly different from ‘Final LLD at maturity
with surgery’. Method 2 was the most accurate. There was a significant
correlation between ‘Expected LLD at maturity with surgery’ and
‘Final LLD at maturity with surgery’, the greatest correlation being
with Method 2. Generally all the methods generated an overcorrected
value. No method generates the precise ‘Expected LLD at maturity
with surgery’. It is essential that an analysis of the pattern of
growth is taken into account when predicting final LLD. As many
additional data as possible are required. Cite this article: